當前位置: 首頁>>代碼示例>>Python>>正文


Python ds_utils.validate_boxes方法代碼示例

本文整理匯總了Python中datasets.ds_utils.validate_boxes方法的典型用法代碼示例。如果您正苦於以下問題:Python ds_utils.validate_boxes方法的具體用法?Python ds_utils.validate_boxes怎麽用?Python ds_utils.validate_boxes使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在datasets.ds_utils的用法示例。


在下文中一共展示了ds_utils.validate_boxes方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _load_coco_annotation

# 需要導入模塊: from datasets import ds_utils [as 別名]
# 或者: from datasets.ds_utils import validate_boxes [as 別名]
def _load_coco_annotation(self, index):
    """
    Loads COCO bounding-box instance annotations. Crowd instances are
    handled by marking their overlaps (with all categories) to -1. This
    overlap value means that crowd "instances" are excluded from training.
    """
    im_ann = self._COCO.loadImgs(index)[0]
    width = im_ann['width']
    height = im_ann['height']

    annIds = self._COCO.getAnnIds(imgIds=index, iscrowd=None)
    objs = self._COCO.loadAnns(annIds)
    # Sanitize bboxes -- some are invalid
    valid_objs = []
    for obj in objs:
      x1 = np.max((0, obj['bbox'][0]))
      y1 = np.max((0, obj['bbox'][1]))
      x2 = np.min((width - 1, x1 + np.max((0, obj['bbox'][2] - 1))))
      y2 = np.min((height - 1, y1 + np.max((0, obj['bbox'][3] - 1))))
      if obj['area'] > 0 and x2 >= x1 and y2 >= y1:
        obj['clean_bbox'] = [x1, y1, x2, y2]
        valid_objs.append(obj)
    objs = valid_objs
    num_objs = len(objs)

    boxes = np.zeros((num_objs, 4), dtype=np.uint16)
    gt_classes = np.zeros((num_objs), dtype=np.int32)
    overlaps = np.zeros((num_objs, self.num_classes), dtype=np.float32)
    seg_areas = np.zeros((num_objs), dtype=np.float32)

    # Lookup table to map from COCO category ids to our internal class
    # indices
    coco_cat_id_to_class_ind = dict([(self._class_to_coco_cat_id[cls],
                                      self._class_to_ind[cls])
                                     for cls in self._classes[1:]])

    for ix, obj in enumerate(objs):
      cls = coco_cat_id_to_class_ind[obj['category_id']]
      boxes[ix, :] = obj['clean_bbox']
      gt_classes[ix] = cls
      seg_areas[ix] = obj['area']
      if obj['iscrowd']:
        # Set overlap to -1 for all classes for crowd objects
        # so they will be excluded during training
        overlaps[ix, :] = -1.0
      else:
        overlaps[ix, cls] = 1.0

    ds_utils.validate_boxes(boxes, width=width, height=height)
    overlaps = scipy.sparse.csr_matrix(overlaps)
    return {'width': width,
            'height': height,
            'boxes': boxes,
            'gt_classes': gt_classes,
            'gt_overlaps': overlaps,
            'flipped': False,
            'seg_areas': seg_areas} 
開發者ID:Sunarker,項目名稱:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代碼行數:59,代碼來源:coco.py

示例2: _load_coco_annotation

# 需要導入模塊: from datasets import ds_utils [as 別名]
# 或者: from datasets.ds_utils import validate_boxes [as 別名]
def _load_coco_annotation(self, index):
        """
        Loads COCO bounding-box instance annotations. Crowd instances are
        handled by marking their overlaps (with all categories) to -1. This
        overlap value means that crowd "instances" are excluded from training.
        """
        im_ann = self._COCO.loadImgs(index)[0]
        width = im_ann['width']
        height = im_ann['height']

        annIds = self._COCO.getAnnIds(imgIds=index, iscrowd=None)
        objs = self._COCO.loadAnns(annIds)
        # Sanitize bboxes -- some are invalid
        valid_objs = []
        for obj in objs:
            x1 = np.max((0, obj['bbox'][0]))
            y1 = np.max((0, obj['bbox'][1]))
            x2 = np.min((width - 1, x1 + np.max((0, obj['bbox'][2] - 1))))
            y2 = np.min((height - 1, y1 + np.max((0, obj['bbox'][3] - 1))))
            if obj['area'] > 0 and x2 >= x1 and y2 >= y1:
                obj['clean_bbox'] = [x1, y1, x2, y2]
                valid_objs.append(obj)
        objs = valid_objs
        num_objs = len(objs)

        boxes = np.zeros((num_objs, 4), dtype=np.uint16)
        gt_classes = np.zeros((num_objs), dtype=np.int32)
        overlaps = np.zeros((num_objs, self.num_classes), dtype=np.float32)
        seg_areas = np.zeros((num_objs), dtype=np.float32)

        # Lookup table to map from COCO category ids to our internal class
        # indices
        coco_cat_id_to_class_ind = dict([(self._class_to_coco_cat_id[cls],
                                          self._class_to_ind[cls])
                                         for cls in self._classes[1:]])

        for ix, obj in enumerate(objs):
            cls = coco_cat_id_to_class_ind[obj['category_id']]
            boxes[ix, :] = obj['clean_bbox']
            gt_classes[ix] = cls
            seg_areas[ix] = obj['area']
            if obj['iscrowd']:
                # Set overlap to -1 for all classes for crowd objects
                # so they will be excluded during training
                overlaps[ix, :] = -1.0
            else:
                overlaps[ix, cls] = 1.0

        ds_utils.validate_boxes(boxes, width=width, height=height)
        overlaps = scipy.sparse.csr_matrix(overlaps)
        return {'width': width,
                'height': height,
                'boxes': boxes,
                'gt_classes': gt_classes,
                'gt_overlaps': overlaps,
                'flipped': False,
                'seg_areas': seg_areas} 
開發者ID:ucbdrive,項目名稱:3d-vehicle-tracking,代碼行數:59,代碼來源:coco.py

示例3: _load_gta_annotation

# 需要導入模塊: from datasets import ds_utils [as 別名]
# 或者: from datasets.ds_utils import validate_boxes [as 別名]
def _load_gta_annotation(self, index):
        """
        Loads GTA bounding-box instance annotations. Crowd instances are
        handled by marking their overlaps (with all categories) to -1. This
        overlap value means that crowd "instances" are excluded from training.
        """
        width = 1920
        height = 1080

        info = self.dataset[self.image_id_at(index)]
        labels = info['labels']  # a list of dict
        # get the kitti part out and insert the tracking id
        boxes = ds.get_box2d_array(labels).astype(float)[:, :4]
        tid = ds.get_label_array(labels, ['id'], (0)).astype(int)
        num_objs = len(tid)
        #gt_cls = ds.get_label_array(labels, ['class'], (0))
        gt_cls = np.array(['foreground']*num_objs)
        gt_classes = np.ones(num_objs)
        # actually just one single value,
        ignore = ds.get_label_array(labels, 
                            ['attributes', 'ignore'], (0)).astype(int)
        cam_calib = np.array(info['intrinsics']['cali'])
        location = ds.get_label_array(labels, ['box3d', 'location'],
                                   (0, 3)).astype(float)
        ext_loc = np.hstack([location, np.ones([len(location), 1])])  # (B, 4)
        proj_loc = ext_loc.dot(cam_calib.T)  # (B, 4) dot (3, 4).T => (B, 3)
        center = proj_loc[:, :2] / proj_loc[:, 2:3]  # normalize

        seg_areas = (boxes[:, 2] - boxes[:, 0] + 1) * \
                    (boxes[:, 3] - boxes[:, 1] + 1)
        overlaps = np.zeros((num_objs, self.num_classes), dtype=np.float32)
        endvid = np.zeros((num_objs), dtype=np.uint16) 
        # pad to make it consistent
        if self.endvid[self.image_id_at(index)]:
            endvid += 1

        for ix in range(num_objs):
            cls = self._class_to_ind[gt_cls[ix].strip()]
            gt_classes[ix] = cls
            overlaps[ix, cls] = 1.0

        ds.validate_boxes(boxes, width=width, height=height)
        overlaps = scipy.sparse.csr_matrix(overlaps)
        info_set = {'width': width,
                    'height': height,
                    'boxes': boxes,
                    'gt_classes': gt_classes,
                    'gt_overlaps': overlaps,
                    'flipped': False,
                    'seg_areas': seg_areas,
                    'ignore': ignore,
                    'end_vid': endvid,
                    'center': center
                    }
        return info_set 
開發者ID:ucbdrive,項目名稱:3d-vehicle-tracking,代碼行數:57,代碼來源:gta.py

示例4: _load_proposals

# 需要導入模塊: from datasets import ds_utils [as 別名]
# 或者: from datasets.ds_utils import validate_boxes [as 別名]
def _load_proposals(self, method, gt_roidb):
        """
        Load pre-computed proposals in the format provided by Jan Hosang:
        http://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-
          computing/research/object-recognition-and-scene-understanding/how-
          good-are-detection-proposals-really/
        For MCG, use boxes from http://www.eecs.berkeley.edu/Research/Projects/
          CS/vision/grouping/mcg/ and convert the file layout using
        lib/datasets/tools/mcg_munge.py.
        """
        box_list = []
        top_k = self.config['top_k']
        valid_methods = [
            'MCG',
            'selective_search',
            'edge_boxes_AR',
            'edge_boxes_70']
        assert method in valid_methods

        print 'Loading {} boxes'.format(method)
        for i, index in enumerate(self._image_index):
            if i % 1000 == 0:
                print '{:d} / {:d}'.format(i + 1, len(self._image_index))

            box_file = osp.join(
                cfg.DATA_DIR, 'coco_proposals', method, 'mat',
                self._get_box_file(index))

            raw_data = sio.loadmat(box_file)['boxes']
            boxes = np.maximum(raw_data - 1, 0).astype(np.uint16)
            if method == 'MCG':
                # Boxes from the MCG website are in (y1, x1, y2, x2) order
                boxes = boxes[:, (1, 0, 3, 2)]
            # Remove duplicate boxes and very small boxes and then take top k
            keep = ds_utils.unique_boxes(boxes)
            boxes = boxes[keep, :]
            keep = ds_utils.filter_small_boxes(boxes, self.config['min_size'])
            boxes = boxes[keep, :]
            boxes = boxes[:top_k, :]
            box_list.append(boxes)
            # Sanity check
            im_ann = self._COCO.loadImgs(index)[0]
            width = im_ann['width']
            height = im_ann['height']
            ds_utils.validate_boxes(boxes, width=width, height=height)
        return self.create_roidb_from_box_list(box_list, gt_roidb) 
開發者ID:playerkk,項目名稱:face-py-faster-rcnn,代碼行數:48,代碼來源:coco.py

示例5: _load_coco_annotation

# 需要導入模塊: from datasets import ds_utils [as 別名]
# 或者: from datasets.ds_utils import validate_boxes [as 別名]
def _load_coco_annotation(self, index):
        """
        Loads COCO bounding-box instance annotations. Crowd instances are
        handled by marking their overlaps (with all categories) to -1. This
        overlap value means that crowd "instances" are excluded from training.
        """
        im_ann = self._COCO.loadImgs(index)[0]
        width = im_ann['width']
        height = im_ann['height']

        annIds = self._COCO.getAnnIds(imgIds=index, iscrowd=None)
        objs = self._COCO.loadAnns(annIds)
        # Sanitize bboxes -- some are invalid
        valid_objs = []
        for obj in objs:
            x1 = np.max((0, obj['bbox'][0]))
            y1 = np.max((0, obj['bbox'][1]))
            x2 = np.min((width - 1, x1 + np.max((0, obj['bbox'][2] - 1))))
            y2 = np.min((height - 1, y1 + np.max((0, obj['bbox'][3] - 1))))
            if obj['area'] > 0 and x2 >= x1 and y2 >= y1:
                obj['clean_bbox'] = [x1, y1, x2, y2]
                valid_objs.append(obj)
        objs = valid_objs
        num_objs = len(objs)

        boxes = np.zeros((num_objs, 4), dtype=np.uint16)
        gt_classes = np.zeros((num_objs), dtype=np.int32)
        overlaps = np.zeros((num_objs, self.num_classes), dtype=np.float32)
        seg_areas = np.zeros((num_objs), dtype=np.float32)

        # Lookup table to map from COCO category ids to our internal class
        # indices
        coco_cat_id_to_class_ind = dict([(self._class_to_coco_cat_id[cls],
                                          self._class_to_ind[cls])
                                         for cls in self._classes[1:]])

        for ix, obj in enumerate(objs):
            cls = coco_cat_id_to_class_ind[obj['category_id']]
            boxes[ix, :] = obj['clean_bbox']
            gt_classes[ix] = cls
            seg_areas[ix] = obj['area']
            if obj['iscrowd']:
                # Set overlap to -1 for all classes for crowd objects
                # so they will be excluded during training
                overlaps[ix, :] = -1.0
            else:
                overlaps[ix, cls] = 1.0

        ds_utils.validate_boxes(boxes, width=width, height=height)
        overlaps = scipy.sparse.csr_matrix(overlaps)
        return {'boxes' : boxes,
                'gt_classes': gt_classes,
                'gt_overlaps' : overlaps,
                'flipped' : False,
                'seg_areas' : seg_areas} 
開發者ID:playerkk,項目名稱:face-py-faster-rcnn,代碼行數:57,代碼來源:coco.py

示例6: _load_coco_annotation

# 需要導入模塊: from datasets import ds_utils [as 別名]
# 或者: from datasets.ds_utils import validate_boxes [as 別名]
def _load_coco_annotation(self, index):
    """
    Loads COCO bounding-box instance annotations. Crowd instances are
    handled by marking their overlaps (with all categories) to -1. This
    overlap value means that crowd "instances" are excluded from training.
    """
    im_ann = self._COCO.loadImgs(index)[0]
    width = im_ann['width']
    height = im_ann['height']

    # Whether to use crowd annotations
    iscrowd = None
    if self.config['use_crowd']:
      iscrowd = False
    annIds = self._COCO.getAnnIds(imgIds=index, iscrowd=iscrowd)
    objs = self._COCO.loadAnns(annIds)
    # Sanitize bboxes -- some are invalid
    valid_objs = []
    for obj in objs:
      x1 = np.max((0, obj['bbox'][0]))
      y1 = np.max((0, obj['bbox'][1]))
      x2 = np.min((width - 1, x1 + np.max((0, obj['bbox'][2] - 1))))
      y2 = np.min((height - 1, y1 + np.max((0, obj['bbox'][3] - 1))))
      if obj['area'] > 0 and x2 >= x1 and y2 >= y1:
        obj['clean_bbox'] = [x1, y1, x2, y2]
        valid_objs.append(obj)
    objs = valid_objs
    num_objs = len(objs)

    boxes = np.zeros((num_objs, 4), dtype=np.uint16)
    gt_classes = np.zeros((num_objs), dtype=np.int32)
    seg_areas = np.zeros((num_objs), dtype=np.float32)

    # Lookup table to map from COCO category ids to our internal class
    # indices
    coco_cat_id_to_class_ind = dict([(self._class_to_coco_cat_id[cls],
                                      self._class_to_ind[cls])
                                     for cls in self._classes[1:]])

    for ix, obj in enumerate(objs):
      cls = coco_cat_id_to_class_ind[obj['category_id']]
      boxes[ix, :] = obj['clean_bbox']
      gt_classes[ix] = cls
      seg_areas[ix] = obj['area']

    ds_utils.validate_boxes(boxes, width=width, height=height)
    return {'width': width,
            'height': height,
            'boxes': boxes,
            'gt_classes': gt_classes,
            'flipped': False,
            'seg_areas': seg_areas} 
開發者ID:endernewton,項目名稱:iter-reason,代碼行數:54,代碼來源:coco.py


注:本文中的datasets.ds_utils.validate_boxes方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。