當前位置: 首頁>>代碼示例>>Python>>正文


Python dataset.load_dataset方法代碼示例

本文整理匯總了Python中dataset.load_dataset方法的典型用法代碼示例。如果您正苦於以下問題:Python dataset.load_dataset方法的具體用法?Python dataset.load_dataset怎麽用?Python dataset.load_dataset使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在dataset的用法示例。


在下文中一共展示了dataset.load_dataset方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: save_train_dataset_as_nifti

# 需要導入模塊: import dataset [as 別名]
# 或者: from dataset import load_dataset [as 別名]
def save_train_dataset_as_nifti(results_dir=os.path.join(paths.results_folder, "final"),
            out_dir=os.path.join(paths.results_folder, "training_set_results")):
    if not os.path.isdir(out_dir):
        os.mkdir(out_dir)
    a = load_dataset()
    for fold in range(5):
        working_dir = os.path.join(results_dir, "fold%d"%fold, "validation")
        ids_in_fold = os.listdir(working_dir)
        ids_in_fold.sort()
        ids_in_fold = [i for i in ids_in_fold if os.path.isdir(os.path.join(working_dir, i))]
        ids_in_fold_as_int = [int(i) for i in ids_in_fold]
        for pat_id in ids_in_fold_as_int:
            pat_in_dataset = a[pat_id]
            seg_pred = np.load(os.path.join(working_dir, "%03.0d"%pat_id, "segs.npz"))['seg_pred']
            b = convert_to_original_coord_system(seg_pred, pat_in_dataset)
            sitk_img = sitk.GetImageFromArray(b)
            sitk_img.SetSpacing(pat_in_dataset['spacing'])
            sitk_img.SetDirection(pat_in_dataset['direction'])
            sitk_img.SetOrigin(pat_in_dataset['origin'])
            sitk.WriteImage(sitk_img, os.path.join(out_dir, pat_in_dataset['name'] + ".nii.gz")) 
開發者ID:MIC-DKFZ,項目名稱:BraTS2017,代碼行數:22,代碼來源:save_pred_seg_as_nifti.py

示例2: save_val_dataset_as_nifti

# 需要導入模塊: import dataset [as 別名]
# 或者: from dataset import load_dataset [as 別名]
def save_val_dataset_as_nifti(results_dir=os.path.join(paths.results_folder, "final"),
              out_dir=os.path.join(paths.results_folder, "val_set_results_new")):
    if not os.path.isdir(out_dir):
        os.mkdir(out_dir)
    a = load_dataset(folder=paths.preprocessed_validation_data_folder)
    for pat in a.keys():
        probs = []
        for fold in range(5):
            working_dir = os.path.join(results_dir, "fold%d"%fold, "pred_val_set")
            res = np.load(os.path.join(working_dir, "%03.0d"%pat, "segs.npz"))
            probs.append(res['softmax_ouput'][None])
        prediction = np.vstack(probs).mean(0).argmax(0)
        prediction_new = convert_to_brats_seg(prediction)
        np.savez_compressed(os.path.join(out_dir, "%03.0d.npz"%pat), seg=prediction)
        b = convert_to_original_coord_system(prediction_new, a[pat])
        sitk_img = sitk.GetImageFromArray(b)
        sitk_img.SetSpacing(a[pat]['spacing'])
        sitk_img.SetDirection(a[pat]['direction'])
        sitk_img.SetOrigin(a[pat]['origin'])
        sitk.WriteImage(sitk_img, os.path.join(out_dir, a[pat]['name'] + ".nii.gz")) 
開發者ID:MIC-DKFZ,項目名稱:BraTS2017,代碼行數:22,代碼來源:save_pred_seg_as_nifti.py

示例3: save_test_set_as_nifti

# 需要導入模塊: import dataset [as 別名]
# 或者: from dataset import load_dataset [as 別名]
def save_test_set_as_nifti(results_dir=os.path.join(paths.results_folder, "final"),
               out_dir=os.path.join(paths.results_folder, "test_set_results")):
    if not os.path.isdir(out_dir):
        os.mkdir(out_dir)
    a = load_dataset(folder=paths.preprocessed_testing_data_folder)
    for pat in a.keys():
        probs = []
        for fold in range(5):
            working_dir = os.path.join(results_dir, "fold%d"%fold, "pred_test_set")
            res = np.load(os.path.join(working_dir, "%03.0d"%pat, "segs.npz"))
            probs.append(res['softmax_ouput'][None])
        prediction = np.vstack(probs).mean(0).argmax(0)
        prediction_new = convert_to_brats_seg(prediction)
        np.savez_compressed(os.path.join(out_dir, "%03.0d.npz"%pat), seg=prediction)
        b = convert_to_original_coord_system(prediction_new, a[pat])
        sitk_img = sitk.GetImageFromArray(b)
        sitk_img.SetSpacing(a[pat]['spacing'])
        sitk_img.SetDirection(a[pat]['direction'])
        sitk_img.SetOrigin(a[pat]['origin'])
        sitk.WriteImage(sitk_img, os.path.join(out_dir, a[pat]['name'] + ".nii.gz")) 
開發者ID:MIC-DKFZ,項目名稱:BraTS2017,代碼行數:22,代碼來源:save_pred_seg_as_nifti.py

示例4: prepare_data

# 需要導入模塊: import dataset [as 別名]
# 或者: from dataset import load_dataset [as 別名]
def prepare_data(device, args):
    data = load_dataset(args.dataset)
    g, features, labels, n_classes, train_nid, val_nid, test_nid = data
    in_feats = features.shape[1]
    feats = preprocess(g, features, args, device)
    # move to device
    labels = labels.to(device)
    train_nid = train_nid.to(device)
    val_nid = val_nid.to(device)
    test_nid = test_nid.to(device)
    train_feats = [x[train_nid] for x in feats]
    train_labels = labels[train_nid]
    return feats, labels, train_feats, train_labels, in_feats, \
        n_classes, train_nid, val_nid, test_nid 
開發者ID:dmlc,項目名稱:dgl,代碼行數:16,代碼來源:sign.py

示例5: run

# 需要導入模塊: import dataset [as 別名]
# 或者: from dataset import load_dataset [as 別名]
def run(fold=0):
    print fold
    I_AM_FOLD = fold
    all_data = load_dataset(folder=paths.preprocessed_testing_data_folder)

    use_patients = all_data
    experiment_name = "final"
    results_folder = os.path.join(paths.results_folder, experiment_name,
                                  "fold%d"%I_AM_FOLD)
    write_images = False
    save_npy = True

    INPUT_PATCH_SIZE =(None, None, None)
    BATCH_SIZE = 2
    n_repeats=3
    num_classes=4

    x_sym = T.tensor5()

    net, seg_layer = build_net(x_sym, INPUT_PATCH_SIZE, num_classes, 4, 16, batch_size=BATCH_SIZE,
                               do_instance_norm=True)
    output_layer = seg_layer

    results_out_folder = os.path.join(results_folder, "pred_test_set")
    if not os.path.isdir(results_out_folder):
        os.mkdir(results_out_folder)

    with open(os.path.join(results_folder, "%s_Params.pkl" % (experiment_name)), 'r') as f:
        params = cPickle.load(f)
        lasagne.layers.set_all_param_values(output_layer, params)

    print "compiling theano functions"
    output = softmax_helper(lasagne.layers.get_output(output_layer, x_sym, deterministic=False,
                                                      batch_norm_update_averages=False, batch_norm_use_averages=False))
    pred_fn = theano.function([x_sym], output)
    _ = pred_fn(np.random.random((BATCH_SIZE, 4, 176, 192, 176)).astype(np.float32))

    run_validation_mirroring(pred_fn, results_out_folder, use_patients, write_images=write_images, hasBrainMask=False,
                             BATCH_SIZE=BATCH_SIZE, num_repeats=n_repeats, preprocess_fn=preprocess, save_npy=save_npy,
                             save_proba=False) 
開發者ID:MIC-DKFZ,項目名稱:BraTS2017,代碼行數:42,代碼來源:predict_test_set.py

示例6: load_dataset_for_previous_run

# 需要導入模塊: import dataset [as 別名]
# 或者: from dataset import load_dataset [as 別名]
def load_dataset_for_previous_run(run_id, **kwargs): # => dataset_obj, mirror_augment
    result_subdir = locate_result_subdir(run_id)

    # Parse config.txt.
    parsed_cfg = dict()
    with open(os.path.join(result_subdir, 'config.txt'), 'rt') as f:
        for line in f:
            if line.startswith('dataset =') or line.startswith('train ='):
                exec(line, parsed_cfg, parsed_cfg)
    dataset_cfg = parsed_cfg.get('dataset', dict())
    train_cfg = parsed_cfg.get('train', dict())
    mirror_augment = train_cfg.get('mirror_augment', False)

    # Handle legacy options.
    if 'h5_path' in dataset_cfg:
        dataset_cfg['tfrecord_dir'] = dataset_cfg.pop('h5_path').replace('.h5', '')
    if 'mirror_augment' in dataset_cfg:
        mirror_augment = dataset_cfg.pop('mirror_augment')
    if 'max_labels' in dataset_cfg:
        v = dataset_cfg.pop('max_labels')
        if v is None: v = 0
        if v == 'all': v = 'full'
        dataset_cfg['max_label_size'] = v
    if 'max_images' in dataset_cfg:
        dataset_cfg.pop('max_images')

    # Handle legacy dataset names.
    v = dataset_cfg['tfrecord_dir']
    v = v.replace('-32x32', '').replace('-32', '')
    v = v.replace('-128x128', '').replace('-128', '')
    v = v.replace('-256x256', '').replace('-256', '')
    v = v.replace('-1024x1024', '').replace('-1024', '')
    v = v.replace('celeba-hq', 'celebahq')
    v = v.replace('cifar-10', 'cifar10')
    v = v.replace('cifar-100', 'cifar100')
    v = v.replace('mnist-rgb', 'mnistrgb')
    v = re.sub('lsun-100k-([^-]*)', 'lsun-\\1-100k', v)
    v = re.sub('lsun-full-([^-]*)', 'lsun-\\1-full', v)
    dataset_cfg['tfrecord_dir'] = v

    # Load dataset.
    dataset_cfg.update(kwargs)
    dataset_obj = dataset.load_dataset(data_dir=config.data_dir, **dataset_cfg)
    return dataset_obj, mirror_augment 
開發者ID:zalandoresearch,項目名稱:disentangling_conditional_gans,代碼行數:46,代碼來源:misc.py

示例7: run

# 需要導入模塊: import dataset [as 別名]
# 或者: from dataset import load_dataset [as 別名]
def run(fold=0):
    print fold
    I_AM_FOLD = fold

    all_data = load_dataset()
    keys_sorted = np.sort(all_data.keys())

    crossval_folds = KFold(len(all_data.keys()), n_folds=5, shuffle=True, random_state=123456)

    ctr = 0
    for train_idx, test_idx in crossval_folds:
        print len(train_idx), len(test_idx)
        if ctr == I_AM_FOLD:
            test_keys = [keys_sorted[i] for i in test_idx]
            break
        ctr += 1

    validation_data = {i:all_data[i] for i in test_keys}


    use_patients = validation_data
    EXPERIMENT_NAME = "final"
    results_folder = os.path.join(paths.results_folder,
                               EXPERIMENT_NAME,  "fold%d" % I_AM_FOLD)
    write_images = False
    save_npy = True

    INPUT_PATCH_SIZE =(None, None, None)
    BATCH_SIZE = 2
    n_repeats=2
    num_classes=4

    x_sym = T.tensor5()

    net, seg_layer = build_net(x_sym, INPUT_PATCH_SIZE, num_classes, 4, 16, batch_size=BATCH_SIZE,
                                           do_instance_norm=True)
    output_layer = seg_layer

    results_out_folder = os.path.join(results_folder, "validation")
    if not os.path.isdir(results_out_folder):
        os.mkdir(results_out_folder)

    with open(os.path.join(results_folder, "%s_Params.pkl" % (EXPERIMENT_NAME)), 'r') as f:
        params = cPickle.load(f)
        lasagne.layers.set_all_param_values(output_layer, params)

    print "compiling theano functions"
    output = softmax_helper(lasagne.layers.get_output(output_layer, x_sym, deterministic=False,
                                                      batch_norm_update_averages=False, batch_norm_use_averages=False))
    pred_fn = theano.function([x_sym], output)
    _ = pred_fn(np.random.random((BATCH_SIZE, 4, 176, 192, 176)).astype(np.float32))  # preallocate memory on GPU

    run_validation_mirroring(pred_fn, results_out_folder, use_patients, write_images=write_images, hasBrainMask=False,
                             BATCH_SIZE=BATCH_SIZE, num_repeats=n_repeats, preprocess_fn=preprocess, save_npy=save_npy) 
開發者ID:MIC-DKFZ,項目名稱:BraTS2017,代碼行數:56,代碼來源:validate_network.py


注:本文中的dataset.load_dataset方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。