當前位置: 首頁>>代碼示例>>Python>>正文


Python dataset.DatasetFromFolder方法代碼示例

本文整理匯總了Python中dataset.DatasetFromFolder方法的典型用法代碼示例。如果您正苦於以下問題:Python dataset.DatasetFromFolder方法的具體用法?Python dataset.DatasetFromFolder怎麽用?Python dataset.DatasetFromFolder使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在dataset的用法示例。


在下文中一共展示了dataset.DatasetFromFolder方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_training_set

# 需要導入模塊: import dataset [as 別名]
# 或者: from dataset import DatasetFromFolder [as 別名]
def get_training_set(data_dir, nFrames, upscale_factor, data_augmentation, file_list, other_dataset, patch_size, future_frame):
    print("Training samples chosen:", file_list)
    return DatasetFromFolder(data_dir,nFrames, upscale_factor, data_augmentation, file_list, other_dataset, patch_size,future_frame,
                             transform=transform()) 
開發者ID:amanchadha,項目名稱:iSeeBetter,代碼行數:6,代碼來源:data.py

示例2: get_test_set

# 需要導入模塊: import dataset [as 別名]
# 或者: from dataset import DatasetFromFolder [as 別名]
def get_test_set(upscale_factor):
    root_dir = download_bsd300()
    test_dir = join(root_dir, "test")
    crop_size = calculate_valid_crop_size(256, upscale_factor)

    return DatasetFromFolder(test_dir,
                             input_transform=input_transform(crop_size, upscale_factor),
                             target_transform=target_transform(crop_size)) 
開發者ID:pytorch,項目名稱:examples,代碼行數:10,代碼來源:data.py

示例3: get_eval_set

# 需要導入模塊: import dataset [as 別名]
# 或者: from dataset import DatasetFromFolder [as 別名]
def get_eval_set(data_dir, nFrames, upscale_factor, data_augmentation, file_list, other_dataset, patch_size, future_frame):
    return DatasetFromFolder(data_dir,nFrames, upscale_factor, data_augmentation, file_list, other_dataset, patch_size,future_frame,
                             transform=transform()) 
開發者ID:amanchadha,項目名稱:iSeeBetter,代碼行數:5,代碼來源:data.py

示例4: get_training_set

# 需要導入模塊: import dataset [as 別名]
# 或者: from dataset import DatasetFromFolder [as 別名]
def get_training_set(upscale_factor):
    root_dir = download_bsd300()
    train_dir = join(root_dir, "train")
    crop_size = calculate_valid_crop_size(256, upscale_factor)

    return DatasetFromFolder(root_dir, 'train',
                             input_transform=input_transform(crop_size, upscale_factor),
                             target_transform=target_transform(crop_size)) 
開發者ID:marcelampc,項目名稱:aerial_mtl,代碼行數:10,代碼來源:data.py

示例5: get_test_set

# 需要導入模塊: import dataset [as 別名]
# 或者: from dataset import DatasetFromFolder [as 別名]
def get_test_set(upscale_factor):
    root_dir = download_bsd300()
    test_dir = join(root_dir, "test")
    crop_size = calculate_valid_crop_size(256, upscale_factor)

    return DatasetFromFolder(root_dir, 'test',
                             input_transform=input_transform(crop_size, upscale_factor),
                             target_transform=target_transform(crop_size)) 
開發者ID:marcelampc,項目名稱:aerial_mtl,代碼行數:10,代碼來源:data.py

示例6: get_training_set

# 需要導入模塊: import dataset [as 別名]
# 或者: from dataset import DatasetFromFolder [as 別名]
def get_training_set(upscale_factor):
    root_dir = download_bsd300()
    train_dir = join(root_dir, "train")
    crop_size = calculate_valid_crop_size(256, upscale_factor)

    return DatasetFromFolder(train_dir,
                             input_transform=input_transform(crop_size, upscale_factor),
                             target_transform=target_transform(crop_size)) 
開發者ID:pytorch,項目名稱:examples,代碼行數:10,代碼來源:data.py

示例7: get_training_set

# 需要導入模塊: import dataset [as 別名]
# 或者: from dataset import DatasetFromFolder [as 別名]
def get_training_set(data_dir, hr, upscale_factor, patch_size, data_augmentation):
    hr_dir = join(data_dir, hr)
    return DatasetFromFolder(hr_dir,patch_size, upscale_factor, data_augmentation,
                             transform=transform()) 
開發者ID:alterzero,項目名稱:DBPN-Pytorch,代碼行數:6,代碼來源:data.py


注:本文中的dataset.DatasetFromFolder方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。