當前位置: 首頁>>代碼示例>>Python>>正文


Python data_utils.generate_feed_dict方法代碼示例

本文整理匯總了Python中data_utils.generate_feed_dict方法的典型用法代碼示例。如果您正苦於以下問題:Python data_utils.generate_feed_dict方法的具體用法?Python data_utils.generate_feed_dict怎麽用?Python data_utils.generate_feed_dict使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在data_utils的用法示例。


在下文中一共展示了data_utils.generate_feed_dict方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: evaluate

# 需要導入模塊: import data_utils [as 別名]
# 或者: from data_utils import generate_feed_dict [as 別名]
def evaluate(sess, data, batch_size, graph, i):
  #computes accuracy
  num_examples = 0.0
  gc = 0.0
  for j in range(0, len(data) - batch_size + 1, batch_size):
    [ct] = sess.run([graph.final_correct],
                    feed_dict=data_utils.generate_feed_dict(data, j, batch_size,
                                                            graph))
    gc += ct * batch_size
    num_examples += batch_size
  print "dev set accuracy   after ", i, " : ", gc / num_examples
  print num_examples, len(data)
  print "--------" 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:15,代碼來源:neural_programmer.py

示例2: Train

# 需要導入模塊: import data_utils [as 別名]
# 或者: from data_utils import generate_feed_dict [as 別名]
def Train(graph, utility, batch_size, train_data, sess, model_dir,
          saver):
  #performs training
  curr = 0
  train_set_loss = 0.0
  utility.random.shuffle(train_data)
  start = time.time()
  for i in range(utility.FLAGS.train_steps):
    curr_step = i
    if (i > 0 and i % FLAGS.write_every == 0):
      model_file = model_dir + "/model_" + str(i)
      saver.save(sess, model_file)
    if curr + batch_size >= len(train_data):
      curr = 0
      utility.random.shuffle(train_data)
    step, cost_value = sess.run(
        [graph.step, graph.total_cost],
        feed_dict=data_utils.generate_feed_dict(
            train_data, curr, batch_size, graph, train=True, utility=utility))
    curr = curr + batch_size
    train_set_loss += cost_value
    if (i > 0 and i % FLAGS.eval_cycle == 0):
      end = time.time()
      time_taken = end - start
      print "step ", i, " ", time_taken, " seconds "
      start = end
      print " printing train set loss: ", train_set_loss / utility.FLAGS.eval_cycle
      train_set_loss = 0.0 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:30,代碼來源:neural_programmer.py

示例3: evaluate

# 需要導入模塊: import data_utils [as 別名]
# 或者: from data_utils import generate_feed_dict [as 別名]
def evaluate(sess, data, batch_size, graph, i):
  #computes accuracy
  num_examples = 0.0
  gc = 0.0
  for j in range(0, len(data) - batch_size + 1, batch_size):
    [ct] = sess.run([graph.final_correct],
                    feed_dict=data_utils.generate_feed_dict(data, j, batch_size,
                                                            graph))
    gc += ct * batch_size
    num_examples += batch_size
  print("dev set accuracy   after ", i, " : ", gc / num_examples)
  print(num_examples, len(data))
  print("--------") 
開發者ID:itsamitgoel,項目名稱:Gun-Detector,代碼行數:15,代碼來源:neural_programmer.py

示例4: Train

# 需要導入模塊: import data_utils [as 別名]
# 或者: from data_utils import generate_feed_dict [as 別名]
def Train(graph, utility, batch_size, train_data, sess, model_dir,
          saver):
  #performs training
  curr = 0
  train_set_loss = 0.0
  utility.random.shuffle(train_data)
  start = time.time()
  for i in range(utility.FLAGS.train_steps):
    curr_step = i
    if (i > 0 and i % FLAGS.write_every == 0):
      model_file = model_dir + "/model_" + str(i)
      saver.save(sess, model_file)
    if curr + batch_size >= len(train_data):
      curr = 0
      utility.random.shuffle(train_data)
    step, cost_value = sess.run(
        [graph.step, graph.total_cost],
        feed_dict=data_utils.generate_feed_dict(
            train_data, curr, batch_size, graph, train=True, utility=utility))
    curr = curr + batch_size
    train_set_loss += cost_value
    if (i > 0 and i % FLAGS.eval_cycle == 0):
      end = time.time()
      time_taken = end - start
      print("step ", i, " ", time_taken, " seconds ")
      start = end
      print(" printing train set loss: ", train_set_loss / utility.FLAGS.eval_cycle)
      train_set_loss = 0.0 
開發者ID:itsamitgoel,項目名稱:Gun-Detector,代碼行數:30,代碼來源:neural_programmer.py


注:本文中的data_utils.generate_feed_dict方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。