本文整理匯總了Python中data_utils.bins方法的典型用法代碼示例。如果您正苦於以下問題:Python data_utils.bins方法的具體用法?Python data_utils.bins怎麽用?Python data_utils.bins使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類data_utils
的用法示例。
在下文中一共展示了data_utils.bins方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_bucket_id
# 需要導入模塊: import data_utils [as 別名]
# 或者: from data_utils import bins [as 別名]
def get_bucket_id(train_buckets_scale_c, max_cur_length, data_set):
"""Get a random bucket id."""
# Choose a bucket according to data distribution. Pick a random number
# in [0, 1] and use the corresponding interval in train_buckets_scale.
random_number_01 = np.random.random_sample()
bucket_id = min([i for i in xrange(len(train_buckets_scale_c))
if train_buckets_scale_c[i] > random_number_01])
while bucket_id > 0 and not data_set[bucket_id]:
bucket_id -= 1
for _ in xrange(10 if np.random.random_sample() < 0.9 else 1):
if data.bins[bucket_id] > max_cur_length:
random_number_01 = min(random_number_01, np.random.random_sample())
bucket_id = min([i for i in xrange(len(train_buckets_scale_c))
if train_buckets_scale_c[i] > random_number_01])
while bucket_id > 0 and not data_set[bucket_id]:
bucket_id -= 1
return bucket_id
示例2: single_test
# 需要導入模塊: import data_utils [as 別名]
# 或者: from data_utils import bins [as 別名]
def single_test(bin_id, model, sess, nprint, batch_size, dev, p, print_out=True,
offset=None, beam_model=None):
"""Test model on test data of length l using the given session."""
if not dev[p][bin_id]:
data.print_out(" bin %d (%d)\t%s\tppl NA errors NA seq-errors NA"
% (bin_id, data.bins[bin_id], p))
return 1.0, 1.0, 0.0
inpt, target = data.get_batch(
bin_id, batch_size, dev[p], FLAGS.height, offset)
if FLAGS.beam_size > 1 and beam_model:
loss, res, new_tgt, scores = m_step(
model, beam_model, sess, batch_size, inpt, target, bin_id,
FLAGS.eval_beam_steps, p)
score_avgs = [sum(s) / float(len(s)) for s in scores]
score_maxs = [max(s) for s in scores]
score_str = ["(%.2f, %.2f)" % (score_avgs[i], score_maxs[i])
for i in xrange(FLAGS.eval_beam_steps)]
data.print_out(" == scores (avg, max): %s" % "; ".join(score_str))
errors, total, seq_err = data.accuracy(inpt, res, target, batch_size,
nprint, new_tgt, scores[-1])
else:
loss, res, _, _ = model.step(sess, inpt, target, False)
errors, total, seq_err = data.accuracy(inpt, res, target, batch_size,
nprint)
seq_err = float(seq_err) / batch_size
if total > 0:
errors = float(errors) / total
if print_out:
data.print_out(" bin %d (%d)\t%s\tppl %.2f errors %.2f seq-errors %.2f"
% (bin_id, data.bins[bin_id], p, data.safe_exp(loss),
100 * errors, 100 * seq_err))
return (errors, seq_err, loss)
示例3: get_best_beam
# 需要導入模塊: import data_utils [as 別名]
# 或者: from data_utils import bins [as 別名]
def get_best_beam(beam_model, sess, inp, target, batch_size, beam_size,
bucket, history, p, test_mode=False):
"""Run beam_model, score beams, and return the best as target and in input."""
_, output_logits, _, _ = beam_model.step(
sess, inp, target, None, beam_size=FLAGS.beam_size)
new_targets, new_firsts, scores, new_inp = [], [], [], np.copy(inp)
for b in xrange(batch_size):
outputs = []
history_b = [[h[b, 0, l] for l in xrange(data.bins[bucket])]
for h in history]
for beam_idx in xrange(beam_size):
outputs.append([int(o[beam_idx * batch_size + b])
for o in output_logits])
target_t = [target[b, 0, l] for l in xrange(data.bins[bucket])]
best, best_score = score_beams(
outputs, [t for t in target_t if t > 0], inp[b, :, :],
[[t for t in h if t > 0] for h in history_b], p, test_mode=test_mode)
scores.append(best_score)
if 1 in best: # Only until _EOS.
best = best[:best.index(1) + 1]
best += [0 for _ in xrange(len(target_t) - len(best))]
new_targets.append([best])
first, _ = score_beams(
outputs, [t for t in target_t if t > 0], inp[b, :, :],
[[t for t in h if t > 0] for h in history_b], p, test_mode=True)
if 1 in first: # Only until _EOS.
first = first[:first.index(1) + 1]
first += [0 for _ in xrange(len(target_t) - len(first))]
new_inp[b, 0, :] = np.array(first, dtype=np.int32)
new_firsts.append([first])
# Change target if we found a great answer.
new_target = np.array(new_targets, dtype=np.int32)
for b in xrange(batch_size):
if scores[b] >= 10.0:
target[b, 0, :] = new_target[b, 0, :]
new_first = np.array(new_firsts, dtype=np.int32)
return new_target, new_first, new_inp, scores
示例4: step
# 需要導入模塊: import data_utils [as 別名]
# 或者: from data_utils import bins [as 別名]
def step(self, sess, inp, target, do_backward, noise_param=None,
get_steps=False):
"""Run a step of the network."""
assert len(inp) == len(target)
length = len(target)
feed_in = {}
feed_in[self.noise_param.name] = noise_param if noise_param else 0.0
feed_in[self.do_training.name] = 1.0 if do_backward else 0.0
feed_out = []
index = len(data_utils.bins)
if length < data_utils.bins[-1] + 1:
index = data_utils.bins.index(length)
if do_backward:
feed_out.append(self.updates[index])
feed_out.append(self.grad_norms[index])
feed_out.append(self.losses[index])
for l in xrange(length):
feed_in[self.input[l].name] = inp[l]
for l in xrange(length):
feed_in[self.target[l].name] = target[l]
feed_out.append(self.outputs[index][l])
if get_steps:
for l in xrange(length+1):
feed_out.append(self.steps[index][l])
res = sess.run(feed_out, feed_in)
offset = 0
norm = None
if do_backward:
offset = 2
norm = res[1]
outputs = res[offset + 1:offset + 1 + length]
steps = res[offset + 1 + length:] if get_steps else None
return res[offset], outputs, norm, steps
示例5: evaluate
# 需要導入模塊: import data_utils [as 別名]
# 或者: from data_utils import bins [as 別名]
def evaluate():
"""Evaluate an existing model."""
batch_size = FLAGS.batch_size
tasks = FLAGS.task.split("-")
with tf.Session() as sess:
model, min_length, max_length, _, _, ensemble = initialize(sess)
bound = data.bins[-1] + 1
for t in tasks:
l = min_length
while l < max_length + EXTRA_EVAL and l < bound:
_, seq_err, _ = single_test(l, model, sess, t, FLAGS.nprint,
batch_size, ensemble=ensemble)
l += 1
while l < bound + 1 and not data.test_set[t][l]:
l += 1
# Animate.
if FLAGS.animate:
anim_size = 2
_, _, test_data = single_test(l, model, sess, t, 0, anim_size,
get_steps=True)
animate(l, test_data, anim_size)
# More tests.
_, seq_err = multi_test(data.forward_max, model, sess, t, FLAGS.nprint,
batch_size * 4, ensemble=ensemble)
if seq_err < 0.01: # Super-test if we're very good and in large-test mode.
if data.forward_max > 4000 and len(tasks) == 1:
multi_test(data.forward_max, model, sess, tasks[0], FLAGS.nprint,
batch_size * 64, 0, ensemble=ensemble)