本文整理匯總了Python中data_provider.float_image_to_uint8方法的典型用法代碼示例。如果您正苦於以下問題:Python data_provider.float_image_to_uint8方法的具體用法?Python data_provider.float_image_to_uint8怎麽用?Python data_provider.float_image_to_uint8使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類data_provider
的用法示例。
在下文中一共展示了data_provider.float_image_to_uint8方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _get_write_image_ops
# 需要導入模塊: import data_provider [as 別名]
# 或者: from data_provider import float_image_to_uint8 [as 別名]
def _get_write_image_ops(eval_dir, filename, images):
"""Create Ops that write images to disk."""
return tf.write_file(
'%s/%s'% (eval_dir, filename),
tf.image.encode_png(data_provider.float_image_to_uint8(images)))
示例2: main
# 需要導入模塊: import data_provider [as 別名]
# 或者: from data_provider import float_image_to_uint8 [as 別名]
def main(_, run_eval_loop=True):
# Fetch real images.
with tf.name_scope('inputs'):
real_images, _, _ = data_provider.provide_data(
'train', FLAGS.num_images_generated, FLAGS.dataset_dir)
image_write_ops = None
if FLAGS.eval_real_images:
tf.summary.scalar('MNIST_Classifier_score',
util.mnist_score(real_images, FLAGS.classifier_filename))
else:
# In order for variables to load, use the same variable scope as in the
# train job.
with tf.variable_scope('Generator'):
images = networks.unconditional_generator(
tf.random_normal([FLAGS.num_images_generated, FLAGS.noise_dims]))
tf.summary.scalar('MNIST_Frechet_distance',
util.mnist_frechet_distance(
real_images, images, FLAGS.classifier_filename))
tf.summary.scalar('MNIST_Classifier_score',
util.mnist_score(images, FLAGS.classifier_filename))
if FLAGS.num_images_generated >= 100:
reshaped_images = tfgan.eval.image_reshaper(
images[:100, ...], num_cols=10)
uint8_images = data_provider.float_image_to_uint8(reshaped_images)
image_write_ops = tf.write_file(
'%s/%s'% (FLAGS.eval_dir, 'unconditional_gan.png'),
tf.image.encode_png(uint8_images[0]))
# For unit testing, use `run_eval_loop=False`.
if not run_eval_loop: return
tf.contrib.training.evaluate_repeatedly(
FLAGS.checkpoint_dir,
hooks=[tf.contrib.training.SummaryAtEndHook(FLAGS.eval_dir),
tf.contrib.training.StopAfterNEvalsHook(1)],
eval_ops=image_write_ops,
max_number_of_evaluations=FLAGS.max_number_of_evaluations)
示例3: main
# 需要導入模塊: import data_provider [as 別名]
# 或者: from data_provider import float_image_to_uint8 [as 別名]
def main(_, run_eval_loop=True):
with tf.name_scope('inputs'):
noise, one_hot_labels = _get_generator_inputs(
FLAGS.num_images_per_class, NUM_CLASSES, FLAGS.noise_dims)
# Generate images.
with tf.variable_scope('Generator'): # Same scope as in train job.
images = networks.conditional_generator((noise, one_hot_labels))
# Visualize images.
reshaped_img = tfgan.eval.image_reshaper(
images, num_cols=FLAGS.num_images_per_class)
tf.summary.image('generated_images', reshaped_img, max_outputs=1)
# Calculate evaluation metrics.
tf.summary.scalar('MNIST_Classifier_score',
util.mnist_score(images, FLAGS.classifier_filename))
tf.summary.scalar('MNIST_Cross_entropy',
util.mnist_cross_entropy(
images, one_hot_labels, FLAGS.classifier_filename))
# Write images to disk.
image_write_ops = tf.write_file(
'%s/%s'% (FLAGS.eval_dir, 'conditional_gan.png'),
tf.image.encode_png(data_provider.float_image_to_uint8(reshaped_img[0])))
# For unit testing, use `run_eval_loop=False`.
if not run_eval_loop: return
tf.contrib.training.evaluate_repeatedly(
FLAGS.checkpoint_dir,
hooks=[tf.contrib.training.SummaryAtEndHook(FLAGS.eval_dir),
tf.contrib.training.StopAfterNEvalsHook(1)],
eval_ops=image_write_ops,
max_number_of_evaluations=FLAGS.max_number_of_evaluations)
示例4: main
# 需要導入模塊: import data_provider [as 別名]
# 或者: from data_provider import float_image_to_uint8 [as 別名]
def main(_, run_eval_loop=True):
with tf.name_scope('inputs'):
images = data_provider.provide_data(
'validation', FLAGS.batch_size, dataset_dir=FLAGS.dataset_dir,
patch_size=FLAGS.patch_size)
# In order for variables to load, use the same variable scope as in the
# train job.
with tf.variable_scope('generator'):
reconstructions, _, prebinary = networks.compression_model(
images,
num_bits=FLAGS.bits_per_patch,
depth=FLAGS.model_depth,
is_training=False)
summaries.add_reconstruction_summaries(images, reconstructions, prebinary)
# Visualize losses.
pixel_loss_per_example = tf.reduce_mean(
tf.abs(images - reconstructions), axis=[1, 2, 3])
pixel_loss = tf.reduce_mean(pixel_loss_per_example)
tf.summary.histogram('pixel_l1_loss_hist', pixel_loss_per_example)
tf.summary.scalar('pixel_l1_loss', pixel_loss)
# Create ops to write images to disk.
uint8_images = data_provider.float_image_to_uint8(images)
uint8_reconstructions = data_provider.float_image_to_uint8(reconstructions)
uint8_reshaped = summaries.stack_images(uint8_images, uint8_reconstructions)
image_write_ops = tf.write_file(
'%s/%s'% (FLAGS.eval_dir, 'compression.png'),
tf.image.encode_png(uint8_reshaped[0]))
# For unit testing, use `run_eval_loop=False`.
if not run_eval_loop: return
tf.contrib.training.evaluate_repeatedly(
FLAGS.checkpoint_dir,
master=FLAGS.master,
hooks=[tf.contrib.training.SummaryAtEndHook(FLAGS.eval_dir),
tf.contrib.training.StopAfterNEvalsHook(1)],
eval_ops=image_write_ops,
max_number_of_evaluations=FLAGS.max_number_of_evaluations)
示例5: main
# 需要導入模塊: import data_provider [as 別名]
# 或者: from data_provider import float_image_to_uint8 [as 別名]
def main(_, run_eval_loop=True):
# Fetch real images.
with tf.name_scope('inputs'):
real_images, _, _ = data_provider.provide_data(
'train', FLAGS.num_images_generated, FLAGS.dataset_dir)
image_write_ops = None
if FLAGS.eval_real_images:
tf.summary.scalar('MNIST_Classifier_score',
util.mnist_score(real_images, FLAGS.classifier_filename))
else:
# In order for variables to load, use the same variable scope as in the
# train job.
with tf.variable_scope('Generator'):
images = networks.unconditional_generator(
tf.random_normal([FLAGS.num_images_generated, FLAGS.noise_dims]),
is_training=False)
tf.summary.scalar('MNIST_Frechet_distance',
util.mnist_frechet_distance(
real_images, images, FLAGS.classifier_filename))
tf.summary.scalar('MNIST_Classifier_score',
util.mnist_score(images, FLAGS.classifier_filename))
if FLAGS.num_images_generated >= 100 and FLAGS.write_to_disk:
reshaped_images = tfgan.eval.image_reshaper(
images[:100, ...], num_cols=10)
uint8_images = data_provider.float_image_to_uint8(reshaped_images)
image_write_ops = tf.write_file(
'%s/%s'% (FLAGS.eval_dir, 'unconditional_gan.png'),
tf.image.encode_png(uint8_images[0]))
# For unit testing, use `run_eval_loop=False`.
if not run_eval_loop: return
tf.contrib.training.evaluate_repeatedly(
FLAGS.checkpoint_dir,
hooks=[tf.contrib.training.SummaryAtEndHook(FLAGS.eval_dir),
tf.contrib.training.StopAfterNEvalsHook(1)],
eval_ops=image_write_ops,
max_number_of_evaluations=FLAGS.max_number_of_evaluations)
示例6: main
# 需要導入模塊: import data_provider [as 別名]
# 或者: from data_provider import float_image_to_uint8 [as 別名]
def main(_, run_eval_loop=True):
with tf.name_scope('inputs'):
noise, one_hot_labels = _get_generator_inputs(
FLAGS.num_images_per_class, NUM_CLASSES, FLAGS.noise_dims)
# Generate images.
with tf.variable_scope('Generator'): # Same scope as in train job.
images = networks.conditional_generator(
(noise, one_hot_labels), is_training=False)
# Visualize images.
reshaped_img = tfgan.eval.image_reshaper(
images, num_cols=FLAGS.num_images_per_class)
tf.summary.image('generated_images', reshaped_img, max_outputs=1)
# Calculate evaluation metrics.
tf.summary.scalar('MNIST_Classifier_score',
util.mnist_score(images, FLAGS.classifier_filename))
tf.summary.scalar('MNIST_Cross_entropy',
util.mnist_cross_entropy(
images, one_hot_labels, FLAGS.classifier_filename))
# Write images to disk.
image_write_ops = None
if FLAGS.write_to_disk:
image_write_ops = tf.write_file(
'%s/%s'% (FLAGS.eval_dir, 'conditional_gan.png'),
tf.image.encode_png(data_provider.float_image_to_uint8(
reshaped_img[0])))
# For unit testing, use `run_eval_loop=False`.
if not run_eval_loop: return
tf.contrib.training.evaluate_repeatedly(
FLAGS.checkpoint_dir,
hooks=[tf.contrib.training.SummaryAtEndHook(FLAGS.eval_dir),
tf.contrib.training.StopAfterNEvalsHook(1)],
eval_ops=image_write_ops,
max_number_of_evaluations=FLAGS.max_number_of_evaluations)
示例7: main
# 需要導入模塊: import data_provider [as 別名]
# 或者: from data_provider import float_image_to_uint8 [as 別名]
def main(_, run_eval_loop=True):
# Fetch and generate images to run through Inception.
with tf.name_scope('inputs'):
real_data, num_classes = _get_real_data(
FLAGS.num_images_generated, FLAGS.dataset_dir)
generated_data = _get_generated_data(
FLAGS.num_images_generated, FLAGS.conditional_eval, num_classes)
# Compute Frechet Inception Distance.
if FLAGS.eval_frechet_inception_distance:
fid = util.get_frechet_inception_distance(
real_data, generated_data, FLAGS.num_images_generated,
FLAGS.num_inception_images)
tf.summary.scalar('frechet_inception_distance', fid)
# Compute normal Inception scores.
if FLAGS.eval_real_images:
inc_score = util.get_inception_scores(
real_data, FLAGS.num_images_generated, FLAGS.num_inception_images)
else:
inc_score = util.get_inception_scores(
generated_data, FLAGS.num_images_generated, FLAGS.num_inception_images)
tf.summary.scalar('inception_score', inc_score)
# If conditional, display an image grid of difference classes.
if FLAGS.conditional_eval and not FLAGS.eval_real_images:
reshaped_imgs = util.get_image_grid(
generated_data, FLAGS.num_images_generated, num_classes,
FLAGS.num_images_per_class)
tf.summary.image('generated_data', reshaped_imgs, max_outputs=1)
# Create ops that write images to disk.
image_write_ops = None
if FLAGS.conditional_eval:
reshaped_imgs = util.get_image_grid(
generated_data, FLAGS.num_images_generated, num_classes,
FLAGS.num_images_per_class)
uint8_images = data_provider.float_image_to_uint8(reshaped_imgs)
image_write_ops = tf.write_file(
'%s/%s'% (FLAGS.eval_dir, 'conditional_cifar10.png'),
tf.image.encode_png(uint8_images[0]))
else:
if FLAGS.num_images_generated >= 100:
reshaped_imgs = tfgan.eval.image_reshaper(
generated_data[:100], num_cols=FLAGS.num_images_per_class)
uint8_images = data_provider.float_image_to_uint8(reshaped_imgs)
image_write_ops = tf.write_file(
'%s/%s'% (FLAGS.eval_dir, 'unconditional_cifar10.png'),
tf.image.encode_png(uint8_images[0]))
# For unit testing, use `run_eval_loop=False`.
if not run_eval_loop: return
tf.contrib.training.evaluate_repeatedly(
FLAGS.checkpoint_dir,
master=FLAGS.master,
hooks=[tf.contrib.training.SummaryAtEndHook(FLAGS.eval_dir),
tf.contrib.training.StopAfterNEvalsHook(1)],
eval_ops=image_write_ops,
max_number_of_evaluations=FLAGS.max_number_of_evaluations)
示例8: main
# 需要導入模塊: import data_provider [as 別名]
# 或者: from data_provider import float_image_to_uint8 [as 別名]
def main(_, run_eval_loop=True):
# Fetch and generate images to run through Inception.
with tf.name_scope('inputs'):
real_data, num_classes = _get_real_data(
FLAGS.num_images_generated, FLAGS.dataset_dir)
generated_data = _get_generated_data(
FLAGS.num_images_generated, FLAGS.conditional_eval, num_classes)
# Compute Frechet Inception Distance.
if FLAGS.eval_frechet_inception_distance:
fid = util.get_frechet_inception_distance(
real_data, generated_data, FLAGS.num_images_generated,
FLAGS.num_inception_images)
tf.summary.scalar('frechet_inception_distance', fid)
# Compute normal Inception scores.
if FLAGS.eval_real_images:
inc_score = util.get_inception_scores(
real_data, FLAGS.num_images_generated, FLAGS.num_inception_images)
else:
inc_score = util.get_inception_scores(
generated_data, FLAGS.num_images_generated, FLAGS.num_inception_images)
tf.summary.scalar('inception_score', inc_score)
# If conditional, display an image grid of difference classes.
if FLAGS.conditional_eval and not FLAGS.eval_real_images:
reshaped_imgs = util.get_image_grid(
generated_data, FLAGS.num_images_generated, num_classes,
FLAGS.num_images_per_class)
tf.summary.image('generated_data', reshaped_imgs, max_outputs=1)
# Create ops that write images to disk.
image_write_ops = None
if FLAGS.conditional_eval and FLAGS.write_to_disk:
reshaped_imgs = util.get_image_grid(
generated_data, FLAGS.num_images_generated, num_classes,
FLAGS.num_images_per_class)
uint8_images = data_provider.float_image_to_uint8(reshaped_imgs)
image_write_ops = tf.write_file(
'%s/%s'% (FLAGS.eval_dir, 'conditional_cifar10.png'),
tf.image.encode_png(uint8_images[0]))
else:
if FLAGS.num_images_generated >= 100 and FLAGS.write_to_disk:
reshaped_imgs = tfgan.eval.image_reshaper(
generated_data[:100], num_cols=FLAGS.num_images_per_class)
uint8_images = data_provider.float_image_to_uint8(reshaped_imgs)
image_write_ops = tf.write_file(
'%s/%s'% (FLAGS.eval_dir, 'unconditional_cifar10.png'),
tf.image.encode_png(uint8_images[0]))
# For unit testing, use `run_eval_loop=False`.
if not run_eval_loop: return
tf.contrib.training.evaluate_repeatedly(
FLAGS.checkpoint_dir,
master=FLAGS.master,
hooks=[tf.contrib.training.SummaryAtEndHook(FLAGS.eval_dir),
tf.contrib.training.StopAfterNEvalsHook(1)],
eval_ops=image_write_ops,
max_number_of_evaluations=FLAGS.max_number_of_evaluations)