當前位置: 首頁>>代碼示例>>Python>>正文


Python data_load.load_vocab方法代碼示例

本文整理匯總了Python中data_load.load_vocab方法的典型用法代碼示例。如果您正苦於以下問題:Python data_load.load_vocab方法的具體用法?Python data_load.load_vocab怎麽用?Python data_load.load_vocab使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在data_load的用法示例。


在下文中一共展示了data_load.load_vocab方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: import data_load [as 別名]
# 或者: from data_load import load_vocab [as 別名]
def __init__(self, hp):
        self.hp = hp
        self.token2idx, self.idx2token = load_vocab(hp.vocab)
        self.embeddings = get_token_embeddings(self.hp.vocab_size, self.hp.d_model, zero_pad=True) 
開發者ID:Kyubyong,項目名稱:transformer,代碼行數:6,代碼來源:model.py

示例2: create_train_data

# 需要導入模塊: import data_load [as 別名]
# 或者: from data_load import load_vocab [as 別名]
def create_train_data():
    from data_load import load_vocab
    roma2idx, idx2roma, surf2idx, idx2surf = load_vocab()
    romaji_sents, surface_sents = [], []
    for line in codecs.open('preprocessed/ja.tsv', 'r', 'utf-8'):
        try:
            idx, romaji_sent, surface_sent = line.strip().split("\t")
        except ValueError:
            continue
        
        if len(romaji_sent) < hp.max_len:
            romaji_sents.append(np.array([roma2idx.get(roma, 1) for roma in romaji_sent+"S"], np.int32).tostring())
            surface_sents.append(np.array([surf2idx.get(surf, 1) for surf in surface_sent+"S"], np.int32).tostring())
    pickle.dump((romaji_sents, surface_sents), open('preprocessed/train.pkl', 'wb'), protocol=2) 
開發者ID:Kyubyong,項目名稱:neural_japanese_transliterator,代碼行數:16,代碼來源:prepro.py

示例3: create_qa_context

# 需要導入模塊: import data_load [as 別名]
# 或者: from data_load import load_vocab [as 別名]
def create_qa_context(model_path: str, word_to_ix_path: str,
                      embed_dim: int, hidden_dim: int, device) -> QAContext:
    word_dict = load_vocab(word_to_ix_path)
    vocab_size = len(word_dict)
    model = TraForEncoder(vocab_size, embed_dim, hidden_dim)
    if not torch.cuda.is_available():
        model.load_state_dict(torch.load(model_path, map_location='cpu'))
    else:
        model.load_state_dict(torch.load(model_path))
    return QAContext(model, word_dict, device) 
開發者ID:WiseDoge,項目名稱:CoupletAI,代碼行數:12,代碼來源:qa.py

示例4: eval

# 需要導入模塊: import data_load [as 別名]
# 或者: from data_load import load_vocab [as 別名]
def eval(logdir):
    # Load graph
    model = Net1()

    # dataflow
    df = Net1DataFlow(hp.test1.data_path, hp.test1.batch_size)

    ckpt = tf.train.latest_checkpoint(logdir)

    pred_conf = PredictConfig(
        model=model,
        input_names=get_eval_input_names(),
        output_names=get_eval_output_names())
    if ckpt:
        pred_conf.session_init = SaverRestore(ckpt)
    predictor = OfflinePredictor(pred_conf)

    x_mfccs, y_ppgs = next(df().get_data())
    y_ppg_1d, pred_ppg_1d, summ_loss, summ_acc = predictor(x_mfccs, y_ppgs)

    # plot confusion matrix
    _, idx2phn = load_vocab()
    y_ppg_1d = [idx2phn[i] for i in y_ppg_1d]
    pred_ppg_1d = [idx2phn[i] for i in pred_ppg_1d]
    summ_cm = plot_confusion_matrix(y_ppg_1d, pred_ppg_1d, phns)

    writer = tf.summary.FileWriter(logdir)
    writer.add_summary(summ_loss)
    writer.add_summary(summ_acc)
    writer.add_summary(summ_cm)
    writer.close() 
開發者ID:andabi,項目名稱:deep-voice-conversion,代碼行數:33,代碼來源:eval1.py

示例5: __init__

# 需要導入模塊: import data_load [as 別名]
# 或者: from data_load import load_vocab [as 別名]
def __init__(self):
        # Load vocabulary
        self.char2idx, self.idx2char = load_vocab()



        self.L = tf.placeholder(tf.int32, shape=(None, None))
        self.mels = tf.placeholder(tf.float32, shape=(None, None, n_mels))
        self.prev_max_attentions = tf.placeholder(tf.int32, shape=(None,))


        # network 1

        with tf.variable_scope("Text2Mel"):
            # Get S or decoder inputs. (B, T//r, n_mels)
            self.S = tf.concat((tf.zeros_like(self.mels[:, :1, :]), self.mels[:, :-1, :]), 1)

            # Networks
            with tf.variable_scope("TextEnc"):
                self.K, self.V = TextEnc(self.L)  # (N, Tx, e)

            with tf.variable_scope("AudioEnc"):
                self.Q = AudioEnc(self.S)

            with tf.variable_scope("Attention"):
                # R: (B, T/r, 2d)
                # alignments: (B, N, T/r)
                # max_attentions: (B,)
                self.R, self.alignments, self.max_attentions = Attention(self.Q, self.K, self.V,
                                                                            mononotic_attention=True,
                                                                            prev_max_attentions=self.prev_max_attentions)
            with tf.variable_scope("AudioDec"):
                self.Y_logits, self.Y = AudioDec(self.R) # (B, T/r, n_mels)

        # network 2

        # During inference, the predicted melspectrogram values are fed.
        with tf.variable_scope("SSRN"):
            self.Z_logits, self.Z = SSRN(self.Y)

        with tf.variable_scope("gs"):
            self.global_step = tf.Variable(0, name='global_step', trainable=False) 
開發者ID:zabir-nabil,項目名稱:bangla-tts,代碼行數:44,代碼來源:graph.py

示例6: eval

# 需要導入模塊: import data_load [as 別名]
# 或者: from data_load import load_vocab [as 別名]
def eval():
    # Load graph
    g = Graph(is_training=False)
    print("Graph loaded")

    # Load data
    X, Y = load_data(mode="test")  # texts
    char2idx, idx2char = load_vocab()

    with g.graph.as_default():
        sv = tf.train.Supervisor()
        with sv.managed_session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:
            # Restore parameters
            sv.saver.restore(sess, tf.train.latest_checkpoint(hp.logdir))
            print("Restored!")

            # Get model
            mname = open(hp.logdir + '/checkpoint', 'r').read().split('"')[1]  # model name

            # Inference
            if not os.path.exists(hp.savedir): os.mkdir(hp.savedir)
            with open("{}/{}".format(hp.savedir, mname), 'w') as fout:
                results = []
                baseline_results = []
                for step in range(len(X) // hp.batch_size):
                    x = X[step * hp.batch_size: (step + 1) * hp.batch_size]
                    y = Y[step * hp.batch_size: (step + 1) * hp.batch_size]

                    # predict characters
                    preds = sess.run(g.preds, {g.x: x})

                    for xx, yy, pp in zip(x, y, preds):  # sentence-wise
                        expected = ''
                        got = ''
                        for xxx, yyy, ppp in zip(xx, yy, pp):  # character-wise
                            if xxx == 0:
                                break
                            else:
                                got += idx2char.get(xxx, "*")
                                expected += idx2char.get(xxx, "*")
                            if ppp == 1: got += " "
                            if yyy == 1: expected += " "

                            # prediction results
                            if ppp == yyy:
                                results.append(1)
                            else:
                                results.append(0)

                            # baseline results
                            if yyy == 0: # no space
                                baseline_results.append(1)
                            else:
                                baseline_results.append(0)

                        fout.write("▌Expected: " + expected + "\n")
                        fout.write("▌Got: " + got + "\n\n")
                fout.write(
                    "Final Accuracy = %d/%d=%.4f\n" % (sum(results), len(results), float(sum(results)) / len(results)))
                fout.write(
                    "Baseline Accuracy = %d/%d=%.4f" % (sum(baseline_results), len(baseline_results), float(sum(baseline_results)) / len(baseline_results))) 
開發者ID:Kyubyong,項目名稱:neural_tokenizer,代碼行數:63,代碼來源:eval.py


注:本文中的data_load.load_vocab方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。