當前位置: 首頁>>代碼示例>>Python>>正文


Python data_load.load_data方法代碼示例

本文整理匯總了Python中data_load.load_data方法的典型用法代碼示例。如果您正苦於以下問題:Python data_load.load_data方法的具體用法?Python data_load.load_data怎麽用?Python data_load.load_data使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在data_load的用法示例。


在下文中一共展示了data_load.load_data方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: synthesize

# 需要導入模塊: import data_load [as 別名]
# 或者: from data_load import load_data [as 別名]
def synthesize():
    if not os.path.exists(hp.sampledir): os.mkdir(hp.sampledir)

    # Load graph
    g = Graph(mode="synthesize"); print("Graph loaded")

    # Load data
    texts = load_data(mode="synthesize")

    saver = tf.train.Saver()
    with tf.Session() as sess:
        saver.restore(sess, tf.train.latest_checkpoint(hp.logdir)); print("Restored!")

        # Feed Forward
        ## mel
        y_hat = np.zeros((texts.shape[0], 200, hp.n_mels*hp.r), np.float32)  # hp.n_mels*hp.r
        for j in tqdm.tqdm(range(200)):
            _y_hat = sess.run(g.y_hat, {g.x: texts, g.y: y_hat})
            y_hat[:, j, :] = _y_hat[:, j, :]
        ## mag
        mags = sess.run(g.z_hat, {g.y_hat: y_hat})
        for i, mag in enumerate(mags):
            print("File {}.wav is being generated ...".format(i+1))
            audio = spectrogram2wav(mag)
            write(os.path.join(hp.sampledir, '{}.wav'.format(i+1)), hp.sr, audio) 
開發者ID:HappyBall,項目名稱:tacotron,代碼行數:27,代碼來源:synthesize.py

示例2: copy_synth_SSRN_GL

# 需要導入模塊: import data_load [as 別名]
# 或者: from data_load import load_data [as 別名]
def copy_synth_SSRN_GL(hp, outdir):

    safe_makedir(outdir)

    dataset = load_data(hp, mode="synthesis") 
    fnames, texts = dataset['fpaths'], dataset['texts']
    bases = [basename(fname) for fname in fnames]
    mels = [np.load(os.path.join(hp.coarse_audio_dir, base + '.npy')) for base in bases]
    lengths = [a.shape[0] for a in mels]
    mels = list2batch(mels, 0)

    g = SSRNGraph(hp, mode="synthesize"); print("Graph (ssrn) loaded")

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        ssrn_epoch = restore_latest_model_parameters(sess, hp, 'ssrn')

        print('Run SSRN...')
        Z = synth_mel2mag(hp, mels, g, sess)

        for i, mag in enumerate(Z):
            print("Working on %s"%(bases[i]))
            mag = mag[:lengths[i]*hp.r,:]  ### trim to generated length             
            wav = spectrogram2wav(hp, mag)
            soundfile.write(outdir + "/%s.wav"%(base), wav, hp.sr) 
開發者ID:CSTR-Edinburgh,項目名稱:ophelia,代碼行數:27,代碼來源:copy_synth_SSRN_GL.py

示例3: test

# 需要導入模塊: import data_load [as 別名]
# 或者: from data_load import load_data [as 別名]
def test():
    x, y = load_data(type="test")
    
    g = Graph(is_training=False)
    with g.graph.as_default():    
        sv = tf.train.Supervisor()
        with sv.managed_session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:
            # Restore parameters
            sv.saver.restore(sess, tf.train.latest_checkpoint(hp.logdir))
            print("Restored!")
            
            # Get model name
            mname = open(hp.logdir + '/checkpoint', 'r').read().split('"')[1] # model name
            
	    if not os.path.exists('results'): os.mkdir('results')
            fout = 'results/{}.txt'.format(mname)
            import copy
            _preds = copy.copy(x)
            while 1:
                istarget, probs, preds = sess.run([g.istarget, g.probs, g.preds], {g.x:_preds, g.y: y})
                probs = probs.astype(np.float32)
                preds = preds.astype(np.float32)
                
                probs *= istarget #(N, 9, 9)
                preds *= istarget #(N, 9, 9)

                probs = np.reshape(probs, (-1, 9*9)) #(N, 9*9)
                preds = np.reshape(preds, (-1, 9*9))#(N, 9*9)
                
                _preds = np.reshape(_preds, (-1, 9*9))
                maxprob_ids = np.argmax(probs, axis=1) # (N, ) <- blanks of the most probable prediction
                maxprobs = np.max(probs, axis=1, keepdims=False)
                for j, (maxprob_id, maxprob) in enumerate(zip(maxprob_ids, maxprobs)):
                    if maxprob != 0:
                        _preds[j, maxprob_id] = preds[j, maxprob_id]
                _preds = np.reshape(_preds, (-1, 9, 9))
                _preds = np.where(x==0, _preds, y) # # Fill in the non-blanks with correct numbers

                if np.count_nonzero(_preds) == _preds.size: break

            write_to_file(x.astype(np.int32), y, _preds.astype(np.int32), fout) 
開發者ID:Kyubyong,項目名稱:sudoku,代碼行數:43,代碼來源:test.py

示例4: test

# 需要導入模塊: import data_load [as 別名]
# 或者: from data_load import load_data [as 別名]
def test():
    # Load data: two samples
    files, speaker_ids = load_data(mode="test")
    speaker_ids = speaker_ids[::-1] # swap

    # Parse
    x = np.zeros((2, 63488, 1), np.int32)
    for i, f in enumerate(files):
        f = np.load(f)
        length = min(63488, len(f))
        x[i, :length, :] = f[:length]

    # Graph
    g = Graph("test"); print("Test Graph loaded")
    with tf.Session() as sess:
        saver = tf.train.Saver()

        # Restore saved variables
        ckpt = tf.train.latest_checkpoint(hp.logdir)
        if ckpt is not None: saver.restore(sess, ckpt)

        # Feed Forward
        y_hat = np.zeros((2, 63488, 1), np.int32)
        for j in tqdm(range(63488)):
            _y_hat = sess.run(g.y_hat, {g.x: x, g.y: y_hat, g.speaker_ids: speaker_ids})
            _y_hat = np.expand_dims(_y_hat, -1)
            y_hat[:, j, :] = _y_hat[:, j, :]

        for i, y in tqdm(enumerate(y_hat)):
            audio = mu_law_decode(y)
            write(os.path.join(hp.sampledir, '{}.wav'.format(i + 1)), hp.sr, audio) 
開發者ID:Kyubyong,項目名稱:vq-vae,代碼行數:33,代碼來源:test.py

示例5: eval

# 需要導入模塊: import data_load [as 別名]
# 或者: from data_load import load_data [as 別名]
def eval(): 
    # Load graph
    g = Graph(mode="eval"); print("Evaluation Graph loaded")

    # Load data
    fpaths, text_lengths, texts = load_data(mode="eval")

    # Parse
    text = np.fromstring(texts[0], np.int32) # (None,)
    fname, mel, mag = load_spectrograms(fpaths[0])

    x = np.expand_dims(text, 0) # (1, None)
    y = np.expand_dims(mel, 0) # (1, None, n_mels*r)
    z = np.expand_dims(mag, 0) # (1, None, n_mfccs)

    saver = tf.train.Saver()
    with tf.Session() as sess:
        saver.restore(sess, tf.train.latest_checkpoint(hp.logdir)); print("Restored!")

        writer = tf.summary.FileWriter(hp.logdir, sess.graph)

        # Feed Forward
        ## mel
        y_hat = np.zeros((1, y.shape[1], y.shape[2]), np.float32)  # hp.n_mels*hp.r
        for j in range(y.shape[1]):
            _y_hat = sess.run(g.y_hat, {g.x: x, g.y: y_hat})
            y_hat[:, j, :] = _y_hat[:, j, :]

        ## mag
        merged, gs = sess.run([g.merged, g.global_step], {g.x:x, g.y:y, g.y_hat: y_hat, g.z: z})
        writer.add_summary(merged, global_step=gs)
        writer.close() 
開發者ID:Kyubyong,項目名稱:tacotron,代碼行數:34,代碼來源:eval.py

示例6: copy_synth_GL

# 需要導入模塊: import data_load [as 別名]
# 或者: from data_load import load_data [as 別名]
def copy_synth_GL(hp, outdir):

    safe_makedir(outdir)

    dataset = load_data(hp, mode="synthesis") 
    fnames, texts = dataset['fpaths'], dataset['texts']
    bases = [basename(fname) for fname in fnames]
    
    for base in bases:
        print("Working on file %s"%(base))
        mag = np.load(os.path.join(hp.full_audio_dir, base + '.npy'))
        wav = spectrogram2wav(hp, mag)
        soundfile.write(outdir + "/%s.wav"%(base), wav, hp.sr) 
開發者ID:CSTR-Edinburgh,項目名稱:ophelia,代碼行數:15,代碼來源:copy_synth_GL.py

示例7: main_work

# 需要導入模塊: import data_load [as 別名]
# 或者: from data_load import load_data [as 別名]
def main_work():

    #################################################
      
    # ============= Process command line ============

    a = ArgumentParser()
    a.add_argument('-c', dest='config', required=True, type=str)
    a.add_argument('-ncores', default=1, type=int, help='Number of cores for parallel processing')    
    opts = a.parse_args()
    
    # ===============================================

    hp = load_config(opts.config)
    assert hp.attention_guide_dir
    
    dataset = load_data(hp) 
    fpaths, text_lengths = dataset['fpaths'], dataset['text_lengths']

    assert os.path.exists(hp.coarse_audio_dir)
    safe_makedir(hp.attention_guide_dir)

    executor = ProcessPoolExecutor(max_workers=opts.ncores)    
    futures = []
    for (fpath, text_length) in zip(fpaths, text_lengths):
         futures.append(executor.submit(proc, fpath, text_length, hp)) 
    proc_list = [future.result() for future in tqdm.tqdm(futures)] 
開發者ID:CSTR-Edinburgh,項目名稱:ophelia,代碼行數:29,代碼來源:prepare_attention_guides.py

示例8: convert

# 需要導入模塊: import data_load [as 別名]
# 或者: from data_load import load_data [as 別名]
def convert():
    g = Graph("convert"); print("Training Graph loaded")
    mfccs = load_data("convert")

    with tf.Session() as sess:
        # Initialize all variables
        sess.run(tf.global_variables_initializer())

        # Restore
        logdir = hp.logdir + "/train1"
        var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'net1')
        saver = tf.train.Saver(var_list=var_list)
        ckpt = tf.train.latest_checkpoint(logdir)
        if ckpt is not None: saver.restore(sess, ckpt)

        logdir = hp.logdir + "/train2"
        var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'net2') +\
                   tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, 'training')
        saver2 = tf.train.Saver(var_list=var_list)
        ckpt = tf.train.latest_checkpoint(logdir)
        if ckpt is not None: saver2.restore(sess, ckpt)

        # Synthesize
        if not os.path.exists('50lang-output'): os.mkdir('50lang-output')

        mag_hats = sess.run(g.mag_hats, {g.mfccs: mfccs})
        for i, mag_hat in enumerate(mag_hats):
            wav = spectrogram2wav(mag_hat)
            write('50lang-output/{}.wav'.format(i+1), hp.sr, wav) 
開發者ID:Kyubyong,項目名稱:cross_vc,代碼行數:31,代碼來源:convert.py

示例9: eval1

# 需要導入模塊: import data_load [as 別名]
# 或者: from data_load import load_data [as 別名]
def eval1():
    # Load data
    mfccs, phns = load_data(mode="eval1")

    # Graph
    g = Graph("eval1"); print("Evaluation Graph loaded")
    logdir = hp.logdir + "/train1"

    # Session
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())

        # Restore saved variables
        var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'net1') +\
                   tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, 'training')
        saver = tf.train.Saver(var_list=var_list)

        ckpt = tf.train.latest_checkpoint(logdir)
        if ckpt is not None: saver.restore(sess, ckpt)

        # Writer
        writer = tf.summary.FileWriter(logdir, sess.graph)

        # Evaluation
        merged, gs = sess.run([g.merged, g.global_step], {g.mfccs: mfccs, g.phones: phns})

        #  Write summaries
        writer.add_summary(merged, global_step=gs)
        writer.close() 
開發者ID:Kyubyong,項目名稱:cross_vc,代碼行數:31,代碼來源:train1.py

示例10: synthesize

# 需要導入模塊: import data_load [as 別名]
# 或者: from data_load import load_data [as 別名]
def synthesize():
    # Load data
    L = load_data("synthesize")

    # Load graph
    g = Graph(mode="synthesize"); print("Graph loaded")

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())

        # Restore parameters
        var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'Text2Mel')
        saver1 = tf.train.Saver(var_list=var_list)
        saver1.restore(sess, tf.train.latest_checkpoint(hp.logdir + "-1"))
        print("Text2Mel Restored!")

        var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'SSRN') + \
                   tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, 'gs')
        saver2 = tf.train.Saver(var_list=var_list)
        saver2.restore(sess, tf.train.latest_checkpoint(hp.logdir + "-2"))
        print("SSRN Restored!")

        # Feed Forward
        ## mel
        Y = np.zeros((len(L), hp.max_T, hp.n_mels), np.float32)
        prev_max_attentions = np.zeros((len(L),), np.int32)
        for j in tqdm(range(hp.max_T)):
            _gs, _Y, _max_attentions, _alignments = \
                sess.run([g.global_step, g.Y, g.max_attentions, g.alignments],
                         {g.L: L,
                          g.mels: Y,
                          g.prev_max_attentions: prev_max_attentions})
            Y[:, j, :] = _Y[:, j, :]
            prev_max_attentions = _max_attentions[:, j]

        # Get magnitude
        Z = sess.run(g.Z, {g.Y: Y})

        # Generate wav files
        if not os.path.exists(hp.sampledir): os.makedirs(hp.sampledir)
        for i, mag in enumerate(Z):
            print("Working on file", i+1)
            wav = spectrogram2wav(mag)
            write(hp.sampledir + "/{}.wav".format(i+1), hp.sr, wav) 
開發者ID:Kyubyong,項目名稱:dc_tts,代碼行數:46,代碼來源:synthesize.py

示例11: eval

# 需要導入模塊: import data_load [as 別名]
# 或者: from data_load import load_data [as 別名]
def eval(): 
    # Load graph
    g = Graph(mode="test")
    print("Graph loaded")

    # Load batch
    _Y = load_data(mode="test")

    X = np.zeros((len(_Y), hp.maxlen))
    Y = np.zeros((len(_Y), hp.maxlen))
    for i, y in enumerate(_Y):
        y = np.fromstring(y, np.int32)
        Y[i][:len(y)] = y
        np.random.shuffle(y)
        X[i][:len(y)] = y

    word2idx, idx2word = g.word2idx, g.idx2word
     
    # Start session         
    with g.graph.as_default():    
        sv = tf.train.Supervisor()
        with sv.managed_session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:
            # Restore parameters
            sv.saver.restore(sess, tf.train.latest_checkpoint(hp.logdir))

            # Get model
            mname = open(hp.logdir + '/checkpoint', 'r').read().split('"')[1]  # model name

            # inference
            if not os.path.exists('results'): os.mkdir('results')
            with codecs.open("results/" + mname, "w", "utf-8") as fout:
                num_words, total_edit_distance = 0, 0
                for i in range(0, len(Y), hp.batch_size):
                    ### Get mini-batches
                    x = X[i:i+hp.batch_size]
                    y = Y[i:i+hp.batch_size]

                    ### Autoregressive inference
                    preds = np.zeros((hp.batch_size, hp.maxlen), np.int32)
                    for j in range(hp.maxlen):
                        _preds = sess.run(g.preds, {g.x: x, g.y: preds})
                        preds[:, j] = _preds[:, j]

                    for xx, yy, pred in zip(x, y, preds):  # sentence-wise
                        inputs = " ".join(idx2word[idx] for idx in xx).replace("_", "").strip()
                        expected = " ".join(idx2word[idx] for idx in yy).replace("_", "").strip()
                        got = " ".join(idx2word[idx] for idx in pred[:len(inputs.split())])

                        edit_distance = distance.levenshtein(expected.split(), got.split())
                        total_edit_distance += edit_distance
                        num_words += len(expected.split())

                        fout.write(u"Inputs  : {}\n".format(inputs))
                        fout.write(u"Expected: {}\n".format(expected))
                        fout.write(u"Got     : {}\n".format(got))
                        fout.write(u"WER     : {}\n\n".format(edit_distance))
                fout.write(u"Total WER: {}/{}={}\n".format(total_edit_distance,
                                                           num_words,
                                                        round(float(total_edit_distance) / num_words, 2))) 
開發者ID:Kyubyong,項目名稱:word_ordering,代碼行數:61,代碼來源:eval.py

示例12: evaluate

# 需要導入模塊: import data_load [as 別名]
# 或者: from data_load import load_data [as 別名]
def evaluate():
    # Load graph
    g = Graph(mode="evaluate"); print("Graph loaded")

    # Load data
    fpaths, _, texts = load_data(mode="evaluate")
    lengths = [len(t) for t in texts]
    maxlen = sorted(lengths, reverse=True)[0]
    new_texts = np.zeros((len(texts), maxlen), np.int32)
    for i, text in enumerate(texts):
        new_texts[i, :len(text)] = [idx for idx in text]
    #new_texts = np.split(new_texts, 2)
    new_texts = new_texts[:evaluate_wav_num]
    half_size = int(len(fpaths)/2)
    print(half_size)
    #new_fpaths = [fpaths[:half_size], fpaths[half_size:]]
    fpaths = fpaths[:evaluate_wav_num]
    saver = tf.train.Saver()
    with tf.Session() as sess:
        saver.restore(sess, tf.train.latest_checkpoint(hp.logdir)); print("Evaluate Model Restored!")
        """
        err = 0.0

        for i, t_split in enumerate(new_texts):
            y_hat = np.zeros((t_split.shape[0], 200, hp.n_mels*hp.r), np.float32)  # hp.n_mels*hp.r
            for j in tqdm.tqdm(range(200)):
                _y_hat = sess.run(g.y_hat, {g.x: t_split, g.y: y_hat})
                y_hat[:, j, :] = _y_hat[:, j, :]

            mags = sess.run(g.z_hat, {g.y_hat: y_hat})
            for k, mag in enumerate(mags):
                fname, mel_ans, mag_ans = load_spectrograms(new_fpaths[i][k])
                print("File {} is being evaluated ...".format(fname))
                audio = spectrogram2wav(mag)
                audio_ans = spectrogram2wav(mag_ans)
                err += calculate_mse(audio, audio_ans)

        err = err/float(len(fpaths))
        print(err)

        """
        # Feed Forward
        ## mel
        y_hat = np.zeros((new_texts.shape[0], 200, hp.n_mels*hp.r), np.float32)  # hp.n_mels*hp.r
        for j in tqdm.tqdm(range(200)):
            _y_hat = sess.run(g.y_hat, {g.x: new_texts, g.y: y_hat})
            y_hat[:, j, :] = _y_hat[:, j, :]
        ## mag
        mags = sess.run(g.z_hat, {g.y_hat: y_hat})
        err = 0.0
        for i, mag in enumerate(mags):
            fname, mel_ans, mag_ans = load_spectrograms(fpaths[i])
            print("File {} is being evaluated ...".format(fname))
            #audio = spectrogram2wav(mag)
            #audio_ans = spectrogram2wav(mag_ans)
            #err += calculate_mse(audio, audio_ans)
            err += calculate_mse(mag, mag_ans)
        err = err/float(len(fpaths))
        print(err)
        opf.write(hp.logdir  + " spectrogram mse: " + str(err) + "\n") 
開發者ID:HappyBall,項目名稱:tacotron,代碼行數:62,代碼來源:evaluate.py

示例13: eval

# 需要導入模塊: import data_load [as 別名]
# 或者: from data_load import load_data [as 別名]
def eval():
    # Load graph
    g = Graph(is_training=False)
    print("Graph loaded")

    # Load data
    X, Y = load_data(mode="test")  # texts
    char2idx, idx2char = load_vocab()

    with g.graph.as_default():
        sv = tf.train.Supervisor()
        with sv.managed_session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:
            # Restore parameters
            sv.saver.restore(sess, tf.train.latest_checkpoint(hp.logdir))
            print("Restored!")

            # Get model
            mname = open(hp.logdir + '/checkpoint', 'r').read().split('"')[1]  # model name

            # Inference
            if not os.path.exists(hp.savedir): os.mkdir(hp.savedir)
            with open("{}/{}".format(hp.savedir, mname), 'w') as fout:
                results = []
                baseline_results = []
                for step in range(len(X) // hp.batch_size):
                    x = X[step * hp.batch_size: (step + 1) * hp.batch_size]
                    y = Y[step * hp.batch_size: (step + 1) * hp.batch_size]

                    # predict characters
                    preds = sess.run(g.preds, {g.x: x})

                    for xx, yy, pp in zip(x, y, preds):  # sentence-wise
                        expected = ''
                        got = ''
                        for xxx, yyy, ppp in zip(xx, yy, pp):  # character-wise
                            if xxx == 0:
                                break
                            else:
                                got += idx2char.get(xxx, "*")
                                expected += idx2char.get(xxx, "*")
                            if ppp == 1: got += " "
                            if yyy == 1: expected += " "

                            # prediction results
                            if ppp == yyy:
                                results.append(1)
                            else:
                                results.append(0)

                            # baseline results
                            if yyy == 0: # no space
                                baseline_results.append(1)
                            else:
                                baseline_results.append(0)

                        fout.write("▌Expected: " + expected + "\n")
                        fout.write("▌Got: " + got + "\n\n")
                fout.write(
                    "Final Accuracy = %d/%d=%.4f\n" % (sum(results), len(results), float(sum(results)) / len(results)))
                fout.write(
                    "Baseline Accuracy = %d/%d=%.4f" % (sum(baseline_results), len(baseline_results), float(sum(baseline_results)) / len(baseline_results))) 
開發者ID:Kyubyong,項目名稱:neural_tokenizer,代碼行數:63,代碼來源:eval.py


注:本文中的data_load.load_data方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。