當前位置: 首頁>>代碼示例>>Python>>正文


Python data.to方法代碼示例

本文整理匯總了Python中data.to方法的典型用法代碼示例。如果您正苦於以下問題:Python data.to方法的具體用法?Python data.to怎麽用?Python data.to使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在data的用法示例。


在下文中一共展示了data.to方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: make_std_mask

# 需要導入模塊: import data [as 別名]
# 或者: from data import to [as 別名]
def make_std_mask(tgt):
    """Create a mask to hide padding and future words."""
    tgt_mask = (tgt != pad).unsqueeze(-2)
    tgt_mask = tgt_mask & subsequent_mask(tgt.size(-1)).type_as(tgt_mask)
    return tgt_mask


# get_batch subdivides the source data into chunks of length args.bptt.
# If source is equal to the example output of the batchify function, with
# a bptt-limit of 2, we'd get the following two Variables for i = 0:
# ┌ a g m s ┐ ┌ b h n t ┐
# └ b h n t ┘ └ c i o u ┘
# Note that despite the name of the function, the subdivison of data is not
# done along the batch dimension (i.e. dimension 1), since that was handled
# by the batchify function. The chunks are along dimension 0, corresponding
# to the seq_len dimension in the LSTM. 
開發者ID:nadavbh12,項目名稱:Character-Level-Language-Modeling-with-Deeper-Self-Attention-pytorch,代碼行數:18,代碼來源:main.py

示例2: get_batch

# 需要導入模塊: import data [as 別名]
# 或者: from data import to [as 別名]
def get_batch(source, i, train):
    if train:
        i = torch.randint(low=0, high=(len(source) - args.bptt), size=(1,)).long().item()
        seq_len = args.bptt
        target = source[i + 1:i + 1 + seq_len].t()
    else:
        seq_len = min(args.bptt, len(source) - 1 - i)
        target = source[i + seq_len, :]

    data = source[i:i + seq_len].t()

    data_mask = (data != pad).unsqueeze(-2)
    target_mask = make_std_mask(data.long())

    # reshape target to match what cross_entropy expects
    target = target.contiguous().view(-1)

    return data, target, data_mask, target_mask 
開發者ID:nadavbh12,項目名稱:Character-Level-Language-Modeling-with-Deeper-Self-Attention-pytorch,代碼行數:20,代碼來源:main.py

示例3: evaluate

# 需要導入模塊: import data [as 別名]
# 或者: from data import to [as 別名]
def evaluate(data_source):
    # Turn on evaluation mode which disables dropout.
    model.eval()
    total_loss = 0.
    ntokens = len(corpus.dictionary)
    memory = model.module.initial_state(eval_batch_size, trainable=False).to(device)

    with torch.no_grad():
        for i in range(0, data_source.size(0) - 1, args.bptt):
            data, targets = get_batch(data_source, i)
            data = torch.t(data)

            loss, memory = model(data, memory, targets)
            loss = torch.mean(loss)

            # data has shape [T * B, N]
            total_loss += args.bptt * loss.item()

    return total_loss / len(data_source) 
開發者ID:L0SG,項目名稱:relational-rnn-pytorch,代碼行數:21,代碼來源:train_rmc.py

示例4: repackage_hidden

# 需要導入模塊: import data [as 別名]
# 或者: from data import to [as 別名]
def repackage_hidden(h):
    """Wraps hidden states in new Tensors, to detach them from their history."""
    if isinstance(h, torch.Tensor):
        return h.detach()
    else:
        return tuple(repackage_hidden(v) for v in h)


# get_batch subdivides the source data into chunks of length args.bptt.
# If source is equal to the example output of the batchify function, with
# a bptt-limit of 2, we'd get the following two Variables for i = 0:
# ┌ a g m s ┐ ┌ b h n t ┐
# └ b h n t ┘ └ c i o u ┘
# Note that despite the name of the function, the subdivison of data is not
# done along the batch dimension (i.e. dimension 1), since that was handled
# by the batchify function. The chunks are along dimension 0, corresponding
# to the seq_len dimension in the LSTM. 
開發者ID:rdspring1,項目名稱:Count-Sketch-Optimizers,代碼行數:19,代碼來源:main.py

示例5: repackage_hidden

# 需要導入模塊: import data [as 別名]
# 或者: from data import to [as 別名]
def repackage_hidden(h):
    """Wraps hidden states in new Tensors, to detach them from their history."""

    if isinstance(h, torch.Tensor):
        return h.detach()
    else:
        return tuple(repackage_hidden(v) for v in h)


# get_batch subdivides the source data into chunks of length args.bptt.
# If source is equal to the example output of the batchify function, with
# a bptt-limit of 2, we'd get the following two Variables for i = 0:
# ┌ a g m s ┐ ┌ b h n t ┐
# └ b h n t ┘ └ c i o u ┘
# Note that despite the name of the function, the subdivison of data is not
# done along the batch dimension (i.e. dimension 1), since that was handled
# by the batchify function. The chunks are along dimension 0, corresponding
# to the seq_len dimension in the LSTM. 
開發者ID:pytorch,項目名稱:examples,代碼行數:20,代碼來源:main.py

示例6: batchify

# 需要導入模塊: import data [as 別名]
# 或者: from data import to [as 別名]
def batchify(data, batch_size):
    # Work out how cleanly we can divide the dataset into batch_size parts.
    nbatch = data.size(0) // batch_size
    # Trim off any extra elements that wouldn't cleanly fit (remainders).
    data = data.narrow(0, 0, nbatch * batch_size)
    # Evenly divide the data across the batch_size batches.
    data = data.view(batch_size, -1).t().contiguous()
    return data.to(device) 
開發者ID:nadavbh12,項目名稱:Character-Level-Language-Modeling-with-Deeper-Self-Attention-pytorch,代碼行數:10,代碼來源:main.py

示例7: batchify

# 需要導入模塊: import data [as 別名]
# 或者: from data import to [as 別名]
def batchify(data, bsz):
    # Work out how cleanly we can divide the dataset into bsz parts.
    nbatch = data.size(0) // bsz
    # Trim off any extra elements that wouldn't cleanly fit (remainders).
    data = data.narrow(0, 0, nbatch * bsz)
    # Evenly divide the data across the bsz batches.
    data = data.view(bsz, -1).t().contiguous()
    return data.to(device) 
開發者ID:L0SG,項目名稱:relational-rnn-pytorch,代碼行數:10,代碼來源:train_rmc.py

示例8: export_onnx

# 需要導入模塊: import data [as 別名]
# 或者: from data import to [as 別名]
def export_onnx(path, batch_size, seq_len):
    print('The model is also exported in ONNX format at {}'.
          format(os.path.realpath(args.onnx_export)))
    model.eval()
    dummy_input = torch.LongTensor(seq_len * batch_size).zero_().view(-1, batch_size).to(device)
    hidden = model.init_hidden(batch_size)
    torch.onnx.export(model, (dummy_input, hidden), path)


# Loop over epochs. 
開發者ID:L0SG,項目名稱:relational-rnn-pytorch,代碼行數:12,代碼來源:train_rmc.py

示例9: train_model

# 需要導入模塊: import data [as 別名]
# 或者: from data import to [as 別名]
def train_model(net, optimizer, criterion, train_loader):
    train_loss = 0.0
    net.train()
    accs = []
    for data, target in train_loader:
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = net(data)
        loss = criterion(output, target)
        loss.backward()
        optimizer.step()
        train_loss += loss.item()*data.size(0)
        accs.append(metrics.acc(output.detach(), target))
    return train_loss, np.mean(accs) 
開發者ID:kumar-shridhar,項目名稱:PyTorch-BayesianCNN,代碼行數:16,代碼來源:main_frequentist.py

示例10: validate_model

# 需要導入模塊: import data [as 別名]
# 或者: from data import to [as 別名]
def validate_model(net, criterion, valid_loader):
    valid_loss = 0.0
    net.eval()
    accs = []
    for data, target in valid_loader:
        data, target = data.to(device), target.to(device)
        output = net(data)
        loss = criterion(output, target)
        valid_loss += loss.item()*data.size(0)
        accs.append(metrics.acc(output.detach(), target))
    return valid_loss, np.mean(accs) 
開發者ID:kumar-shridhar,項目名稱:PyTorch-BayesianCNN,代碼行數:13,代碼來源:main_frequentist.py

示例11: train

# 需要導入模塊: import data [as 別名]
# 或者: from data import to [as 別名]
def train():
    # Turn on training mode which enables dropout.
    model.train()
    total_loss = 0.
    start_time = time.time()
    ntokens = len(corpus.dictionary)
    hidden = model.init_hidden(args.batch_size)
    for batch, i in enumerate(range(0, train_data.size(0) - 1, args.bptt)):
        data, targets = get_batch(train_data, i)
        # Starting each batch, we detach the hidden state from how it was previously produced.
        # If we didn't, the model would try backpropagating all the way to start of the dataset.
        hidden = repackage_hidden(hidden)
        optimizer.zero_grad()
        output, hidden = model(data, hidden)
        loss = criterion(output.view(-1, ntokens), targets)
        loss.backward()

        # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs.
        torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
        optimizer.step()

        total_loss += loss.item()

        if batch % args.log_interval == 0 and batch > 0:
            cur_loss = total_loss / args.log_interval
            elapsed = time.time() - start_time
            print('| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.2f} | ms/batch {:5.2f} | '
                    'loss {:5.2f} | ppl {:8.2f}'.format(
                epoch, batch, len(train_data) // args.bptt, lr,
                elapsed * 1000 / args.log_interval, cur_loss, math.exp(cur_loss)))
            sys.stdout.flush()
            total_loss = 0
            start_time = time.time() 
開發者ID:rdspring1,項目名稱:Count-Sketch-Optimizers,代碼行數:35,代碼來源:main.py

示例12: train

# 需要導入模塊: import data [as 別名]
# 或者: from data import to [as 別名]
def train():
    # Turn on training mode which enables dropout.
    model.train()
    total_loss = 0.
    start_time = time.time()
    ntokens = len(corpus.dictionary)
    if args.model != 'Transformer':
        hidden = model.init_hidden(args.batch_size)
    for batch, i in enumerate(range(0, train_data.size(0) - 1, args.bptt)):
        data, targets = get_batch(train_data, i)
        # Starting each batch, we detach the hidden state from how it was previously produced.
        # If we didn't, the model would try backpropagating all the way to start of the dataset.
        model.zero_grad()
        if args.model == 'Transformer':
            output = model(data)
            output = output.view(-1, ntokens)
        else:
            hidden = repackage_hidden(hidden)
            output, hidden = model(data, hidden)
        loss = criterion(output, targets)
        loss.backward()

        # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs.
        torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
        for p in model.parameters():
            p.data.add_(-lr, p.grad)

        total_loss += loss.item()

        if batch % args.log_interval == 0 and batch > 0:
            cur_loss = total_loss / args.log_interval
            elapsed = time.time() - start_time
            print('| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.2f} | ms/batch {:5.2f} | '
                    'loss {:5.2f} | ppl {:8.2f}'.format(
                epoch, batch, len(train_data) // args.bptt, lr,
                elapsed * 1000 / args.log_interval, cur_loss, math.exp(cur_loss)))
            total_loss = 0
            start_time = time.time()
        if args.dry_run:
            break 
開發者ID:pytorch,項目名稱:examples,代碼行數:42,代碼來源:main.py

示例13: train

# 需要導入模塊: import data [as 別名]
# 或者: from data import to [as 別名]
def train():
    # Turn on training mode which enables dropout.
    model.train()
    total_loss = 0.
    start_time = time.time()
    ntokens = len(corpus.dictionary)
    if args.model != 'Transformer':
        hidden = model.init_hidden(args.batch_size)
    for batch, i in enumerate(range(0, train_data.size(0) - 1, args.bptt)):
        data, targets = get_batch(train_data, i)
        # Starting each batch, we detach the hidden state from how it was previously produced.
        # If we didn't, the model would try backpropagating all the way to start of the dataset.
        model.zero_grad()
        if args.model == 'Transformer':
            output = model(data)
        else:
            hidden = repackage_hidden(hidden)
            output, hidden = model(data, hidden)
        loss = criterion(output.view(-1, ntokens), targets)
        loss.backward()

        # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs.
        torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
        for p in model.parameters():
            p.data.add_(-lr, p.grad.data)

        total_loss += loss.item()

        if batch % args.log_interval == 0 and batch > 0:
            cur_loss = total_loss / args.log_interval
            elapsed = time.time() - start_time
            print('| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.2f} | ms/batch {:5.2f} | '
                    'loss {:5.2f} | ppl {:8.2f}'.format(
                epoch, batch, len(train_data) // args.bptt, lr,
                elapsed * 1000 / args.log_interval, cur_loss, math.exp(cur_loss)))
            total_loss = 0
            start_time = time.time() 
開發者ID:Lornatang,項目名稱:PyTorch,代碼行數:39,代碼來源:main.py

示例14: repackage_hidden

# 需要導入模塊: import data [as 別名]
# 或者: from data import to [as 別名]
def repackage_hidden(h):
    """Wraps hidden states in new Variables, to detach them from their history."""
    if isinstance(h, torch.Tensor):
        return h.detach()
    else:
        return tuple(repackage_hidden(v) for v in h) 
開發者ID:Jackmzw,項目名稱:Price_Prediction_LOB,代碼行數:8,代碼來源:rnn.py

示例15: get_batch

# 需要導入模塊: import data [as 別名]
# 或者: from data import to [as 別名]
def get_batch(source, source_batch, i):
    """Construct the input and target data of the model, with batch. """
    data = torch.zeros(args.bptt, args.bsz, args.ninp)
    target = torch.zeros(args.bsz, dtype=torch.long)
    batch_index = source_batch[i]
    for j in range(args.bsz):
        data[:, j, :] = torch.from_numpy(source[0][batch_index[j] - args.bptt + 1: batch_index[j] + 1]).float()
        target[j] = int(source[1][batch_index[j]])
    return data.to(device), target.to(device) 
開發者ID:Jackmzw,項目名稱:Price_Prediction_LOB,代碼行數:11,代碼來源:rnn.py


注:本文中的data.to方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。