本文整理匯總了Python中data.to方法的典型用法代碼示例。如果您正苦於以下問題:Python data.to方法的具體用法?Python data.to怎麽用?Python data.to使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類data
的用法示例。
在下文中一共展示了data.to方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: make_std_mask
# 需要導入模塊: import data [as 別名]
# 或者: from data import to [as 別名]
def make_std_mask(tgt):
"""Create a mask to hide padding and future words."""
tgt_mask = (tgt != pad).unsqueeze(-2)
tgt_mask = tgt_mask & subsequent_mask(tgt.size(-1)).type_as(tgt_mask)
return tgt_mask
# get_batch subdivides the source data into chunks of length args.bptt.
# If source is equal to the example output of the batchify function, with
# a bptt-limit of 2, we'd get the following two Variables for i = 0:
# ┌ a g m s ┐ ┌ b h n t ┐
# └ b h n t ┘ └ c i o u ┘
# Note that despite the name of the function, the subdivison of data is not
# done along the batch dimension (i.e. dimension 1), since that was handled
# by the batchify function. The chunks are along dimension 0, corresponding
# to the seq_len dimension in the LSTM.
開發者ID:nadavbh12,項目名稱:Character-Level-Language-Modeling-with-Deeper-Self-Attention-pytorch,代碼行數:18,代碼來源:main.py
示例2: get_batch
# 需要導入模塊: import data [as 別名]
# 或者: from data import to [as 別名]
def get_batch(source, i, train):
if train:
i = torch.randint(low=0, high=(len(source) - args.bptt), size=(1,)).long().item()
seq_len = args.bptt
target = source[i + 1:i + 1 + seq_len].t()
else:
seq_len = min(args.bptt, len(source) - 1 - i)
target = source[i + seq_len, :]
data = source[i:i + seq_len].t()
data_mask = (data != pad).unsqueeze(-2)
target_mask = make_std_mask(data.long())
# reshape target to match what cross_entropy expects
target = target.contiguous().view(-1)
return data, target, data_mask, target_mask
開發者ID:nadavbh12,項目名稱:Character-Level-Language-Modeling-with-Deeper-Self-Attention-pytorch,代碼行數:20,代碼來源:main.py
示例3: evaluate
# 需要導入模塊: import data [as 別名]
# 或者: from data import to [as 別名]
def evaluate(data_source):
# Turn on evaluation mode which disables dropout.
model.eval()
total_loss = 0.
ntokens = len(corpus.dictionary)
memory = model.module.initial_state(eval_batch_size, trainable=False).to(device)
with torch.no_grad():
for i in range(0, data_source.size(0) - 1, args.bptt):
data, targets = get_batch(data_source, i)
data = torch.t(data)
loss, memory = model(data, memory, targets)
loss = torch.mean(loss)
# data has shape [T * B, N]
total_loss += args.bptt * loss.item()
return total_loss / len(data_source)
示例4: repackage_hidden
# 需要導入模塊: import data [as 別名]
# 或者: from data import to [as 別名]
def repackage_hidden(h):
"""Wraps hidden states in new Tensors, to detach them from their history."""
if isinstance(h, torch.Tensor):
return h.detach()
else:
return tuple(repackage_hidden(v) for v in h)
# get_batch subdivides the source data into chunks of length args.bptt.
# If source is equal to the example output of the batchify function, with
# a bptt-limit of 2, we'd get the following two Variables for i = 0:
# ┌ a g m s ┐ ┌ b h n t ┐
# └ b h n t ┘ └ c i o u ┘
# Note that despite the name of the function, the subdivison of data is not
# done along the batch dimension (i.e. dimension 1), since that was handled
# by the batchify function. The chunks are along dimension 0, corresponding
# to the seq_len dimension in the LSTM.
示例5: repackage_hidden
# 需要導入模塊: import data [as 別名]
# 或者: from data import to [as 別名]
def repackage_hidden(h):
"""Wraps hidden states in new Tensors, to detach them from their history."""
if isinstance(h, torch.Tensor):
return h.detach()
else:
return tuple(repackage_hidden(v) for v in h)
# get_batch subdivides the source data into chunks of length args.bptt.
# If source is equal to the example output of the batchify function, with
# a bptt-limit of 2, we'd get the following two Variables for i = 0:
# ┌ a g m s ┐ ┌ b h n t ┐
# └ b h n t ┘ └ c i o u ┘
# Note that despite the name of the function, the subdivison of data is not
# done along the batch dimension (i.e. dimension 1), since that was handled
# by the batchify function. The chunks are along dimension 0, corresponding
# to the seq_len dimension in the LSTM.
示例6: batchify
# 需要導入模塊: import data [as 別名]
# 或者: from data import to [as 別名]
def batchify(data, batch_size):
# Work out how cleanly we can divide the dataset into batch_size parts.
nbatch = data.size(0) // batch_size
# Trim off any extra elements that wouldn't cleanly fit (remainders).
data = data.narrow(0, 0, nbatch * batch_size)
# Evenly divide the data across the batch_size batches.
data = data.view(batch_size, -1).t().contiguous()
return data.to(device)
開發者ID:nadavbh12,項目名稱:Character-Level-Language-Modeling-with-Deeper-Self-Attention-pytorch,代碼行數:10,代碼來源:main.py
示例7: batchify
# 需要導入模塊: import data [as 別名]
# 或者: from data import to [as 別名]
def batchify(data, bsz):
# Work out how cleanly we can divide the dataset into bsz parts.
nbatch = data.size(0) // bsz
# Trim off any extra elements that wouldn't cleanly fit (remainders).
data = data.narrow(0, 0, nbatch * bsz)
# Evenly divide the data across the bsz batches.
data = data.view(bsz, -1).t().contiguous()
return data.to(device)
示例8: export_onnx
# 需要導入模塊: import data [as 別名]
# 或者: from data import to [as 別名]
def export_onnx(path, batch_size, seq_len):
print('The model is also exported in ONNX format at {}'.
format(os.path.realpath(args.onnx_export)))
model.eval()
dummy_input = torch.LongTensor(seq_len * batch_size).zero_().view(-1, batch_size).to(device)
hidden = model.init_hidden(batch_size)
torch.onnx.export(model, (dummy_input, hidden), path)
# Loop over epochs.
示例9: train_model
# 需要導入模塊: import data [as 別名]
# 或者: from data import to [as 別名]
def train_model(net, optimizer, criterion, train_loader):
train_loss = 0.0
net.train()
accs = []
for data, target in train_loader:
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = net(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
train_loss += loss.item()*data.size(0)
accs.append(metrics.acc(output.detach(), target))
return train_loss, np.mean(accs)
示例10: validate_model
# 需要導入模塊: import data [as 別名]
# 或者: from data import to [as 別名]
def validate_model(net, criterion, valid_loader):
valid_loss = 0.0
net.eval()
accs = []
for data, target in valid_loader:
data, target = data.to(device), target.to(device)
output = net(data)
loss = criterion(output, target)
valid_loss += loss.item()*data.size(0)
accs.append(metrics.acc(output.detach(), target))
return valid_loss, np.mean(accs)
示例11: train
# 需要導入模塊: import data [as 別名]
# 或者: from data import to [as 別名]
def train():
# Turn on training mode which enables dropout.
model.train()
total_loss = 0.
start_time = time.time()
ntokens = len(corpus.dictionary)
hidden = model.init_hidden(args.batch_size)
for batch, i in enumerate(range(0, train_data.size(0) - 1, args.bptt)):
data, targets = get_batch(train_data, i)
# Starting each batch, we detach the hidden state from how it was previously produced.
# If we didn't, the model would try backpropagating all the way to start of the dataset.
hidden = repackage_hidden(hidden)
optimizer.zero_grad()
output, hidden = model(data, hidden)
loss = criterion(output.view(-1, ntokens), targets)
loss.backward()
# `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs.
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
optimizer.step()
total_loss += loss.item()
if batch % args.log_interval == 0 and batch > 0:
cur_loss = total_loss / args.log_interval
elapsed = time.time() - start_time
print('| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.2f} | ms/batch {:5.2f} | '
'loss {:5.2f} | ppl {:8.2f}'.format(
epoch, batch, len(train_data) // args.bptt, lr,
elapsed * 1000 / args.log_interval, cur_loss, math.exp(cur_loss)))
sys.stdout.flush()
total_loss = 0
start_time = time.time()
示例12: train
# 需要導入模塊: import data [as 別名]
# 或者: from data import to [as 別名]
def train():
# Turn on training mode which enables dropout.
model.train()
total_loss = 0.
start_time = time.time()
ntokens = len(corpus.dictionary)
if args.model != 'Transformer':
hidden = model.init_hidden(args.batch_size)
for batch, i in enumerate(range(0, train_data.size(0) - 1, args.bptt)):
data, targets = get_batch(train_data, i)
# Starting each batch, we detach the hidden state from how it was previously produced.
# If we didn't, the model would try backpropagating all the way to start of the dataset.
model.zero_grad()
if args.model == 'Transformer':
output = model(data)
output = output.view(-1, ntokens)
else:
hidden = repackage_hidden(hidden)
output, hidden = model(data, hidden)
loss = criterion(output, targets)
loss.backward()
# `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs.
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
for p in model.parameters():
p.data.add_(-lr, p.grad)
total_loss += loss.item()
if batch % args.log_interval == 0 and batch > 0:
cur_loss = total_loss / args.log_interval
elapsed = time.time() - start_time
print('| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.2f} | ms/batch {:5.2f} | '
'loss {:5.2f} | ppl {:8.2f}'.format(
epoch, batch, len(train_data) // args.bptt, lr,
elapsed * 1000 / args.log_interval, cur_loss, math.exp(cur_loss)))
total_loss = 0
start_time = time.time()
if args.dry_run:
break
示例13: train
# 需要導入模塊: import data [as 別名]
# 或者: from data import to [as 別名]
def train():
# Turn on training mode which enables dropout.
model.train()
total_loss = 0.
start_time = time.time()
ntokens = len(corpus.dictionary)
if args.model != 'Transformer':
hidden = model.init_hidden(args.batch_size)
for batch, i in enumerate(range(0, train_data.size(0) - 1, args.bptt)):
data, targets = get_batch(train_data, i)
# Starting each batch, we detach the hidden state from how it was previously produced.
# If we didn't, the model would try backpropagating all the way to start of the dataset.
model.zero_grad()
if args.model == 'Transformer':
output = model(data)
else:
hidden = repackage_hidden(hidden)
output, hidden = model(data, hidden)
loss = criterion(output.view(-1, ntokens), targets)
loss.backward()
# `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs.
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
for p in model.parameters():
p.data.add_(-lr, p.grad.data)
total_loss += loss.item()
if batch % args.log_interval == 0 and batch > 0:
cur_loss = total_loss / args.log_interval
elapsed = time.time() - start_time
print('| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.2f} | ms/batch {:5.2f} | '
'loss {:5.2f} | ppl {:8.2f}'.format(
epoch, batch, len(train_data) // args.bptt, lr,
elapsed * 1000 / args.log_interval, cur_loss, math.exp(cur_loss)))
total_loss = 0
start_time = time.time()
示例14: repackage_hidden
# 需要導入模塊: import data [as 別名]
# 或者: from data import to [as 別名]
def repackage_hidden(h):
"""Wraps hidden states in new Variables, to detach them from their history."""
if isinstance(h, torch.Tensor):
return h.detach()
else:
return tuple(repackage_hidden(v) for v in h)
示例15: get_batch
# 需要導入模塊: import data [as 別名]
# 或者: from data import to [as 別名]
def get_batch(source, source_batch, i):
"""Construct the input and target data of the model, with batch. """
data = torch.zeros(args.bptt, args.bsz, args.ninp)
target = torch.zeros(args.bsz, dtype=torch.long)
batch_index = source_batch[i]
for j in range(args.bsz):
data[:, j, :] = torch.from_numpy(source[0][batch_index[j] - args.bptt + 1: batch_index[j] + 1]).float()
target[j] = int(source[1][batch_index[j]])
return data.to(device), target.to(device)