本文整理匯總了Python中data.load方法的典型用法代碼示例。如果您正苦於以下問題:Python data.load方法的具體用法?Python data.load怎麽用?Python data.load使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類data
的用法示例。
在下文中一共展示了data.load方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: restart_required
# 需要導入模塊: import data [as 別名]
# 或者: from data import load [as 別名]
def restart_required(self):
"""Indicates whether splunkd is in a state that requires a restart.
:return: A ``boolean`` that indicates whether a restart is required.
"""
response = self.get("messages").body.read()
messages = data.load(response)['feed']
if 'entry' not in messages:
result = False
else:
if isinstance(messages['entry'], dict):
titles = [messages['entry']['title']]
else:
titles = [x['title'] for x in messages['entry']]
result = 'restart_required' in titles
return result
示例2: load_test
# 需要導入模塊: import data [as 別名]
# 或者: from data import load [as 別名]
def load_test(self):
self.y_test = np.load(self.test_pred_file).astype(np.float32)
self.images_test = data.load('test')
features = np.load("data/features_test.pkl").item()
if "aaronmoments" in self.features:
print "aaronmoments"
def normalize(x):
return x
# return (x - x.mean(axis=0,keepdims=True))/x.std(axis=0,keepdims=True)
image_shapes = np.asarray([img.shape for img in self.images_test]).astype(np.float32)
moments = np.load("data/image_moment_stats_v1_test.pkl")
centroid_distance = np.abs(moments["centroids"][:, [1, 0]] - image_shapes / 2)
angles = moments["angles"][:, None]
minor_axes = moments["minor_axes"][:, None]
major_axes = moments["major_axes"][:, None]
centroid_distance = normalize(centroid_distance)
angles = normalize(angles)
minor_axes = normalize(minor_axes)
major_axes = normalize(major_axes)
features["aaronmoments"] = np.concatenate([centroid_distance,angles,minor_axes,major_axes], 1).astype(np.float32)
self.info_test = np.concatenate([features[feat] for feat in self.features], 1).astype(np.float32)
示例3: load_train
# 需要導入模塊: import data [as 別名]
# 或者: from data import load [as 別名]
def load_train(self):
labels = utils.one_hot(data.labels_train, m=121).astype(np.float32)
split = np.load(DEFAULT_VALIDATION_SPLIT_PATH)
split = np.load(DEFAULT_VALIDATION_SPLIT_PATH)
indices_train = split['indices_train']
indices_valid = split['indices_valid']
image_shapes = np.asarray([img.shape for img in data.load('train')]).astype(np.float32)
moments = np.load("data/image_moment_stats_v1_train.pkl")
centroid_distance = np.abs(moments["centroids"][:, [1, 0]] - image_shapes / 2)
info = np.concatenate((centroid_distance, image_shapes, moments["angles"][:, None], moments["minor_axes"][:, None], moments["major_axes"][:, None]), 1).astype(np.float32)
self.info_train = info[indices_train]
self.info_valid = info[indices_valid]
self.y_train = np.load(self.train_pred_file).astype(np.float32)
self.y_valid = np.load(self.valid_pred_file).astype(np.float32)
self.labels_train = labels[indices_train]
self.labels_valid = labels[indices_valid]
示例4: _load_atom
# 需要導入模塊: import data [as 別名]
# 或者: from data import load [as 別名]
def _load_atom(response, match=None):
return data.load(response.body.read(), match)
# Load an array of atom entries from the body of the given response
示例5: refresh
# 需要導入模塊: import data [as 別名]
# 或者: from data import load [as 別名]
def refresh(self, state=None):
"""Refreshes the state of this entity.
If *state* is provided, load it as the new state for this
entity. Otherwise, make a roundtrip to the server (by calling
the :meth:`read` method of ``self``) to fetch an updated state,
plus at most two additional round trips if
the ``autologin`` field of :func:`connect` is set to ``True``.
:param state: Entity-specific arguments (optional).
:type state: ``dict``
:raises EntityDeletedException: Raised if the entity no longer exists on
the server.
**Example**::
import splunklib.client as client
s = client.connect(...)
search = s.apps['search']
search.refresh()
"""
if state is not None:
self._state = state
else:
self._state = self.read(self.get())
return self
示例6: _load_atom
# 需要導入模塊: import data [as 別名]
# 或者: from data import load [as 別名]
def _load_atom(response, match=None):
return data.load(response.body.read(), match)
# Load an array of atom entries from the body of the given response
示例7: iter
# 需要導入模塊: import data [as 別名]
# 或者: from data import load [as 別名]
def iter(self, offset=0, count=None, pagesize=None, **kwargs):
"""Iterates over the collection.
This method is equivalent to the :meth:`list` method, but
it returns an iterator and can load a certain number of entities at a
time from the server.
:param offset: The index of the first entity to return (optional).
:type offset: ``integer``
:param count: The maximum number of entities to return (optional).
:type count: ``integer``
:param pagesize: The number of entities to load (optional).
:type pagesize: ``integer``
:param kwargs: Additional arguments (optional):
- "search" (``string``): The search query to filter responses.
- "sort_dir" (``string``): The direction to sort returned items:
"asc" or "desc".
- "sort_key" (``string``): The field to use for sorting (optional).
- "sort_mode" (``string``): The collating sequence for sorting
returned items: "auto", "alpha", "alpha_case", or "num".
:type kwargs: ``dict``
**Example**::
import splunklib.client as client
s = client.connect(...)
for saved_search in s.saved_searches.iter(pagesize=10):
# Loads 10 saved searches at a time from the
# server.
...
"""
assert pagesize is None or pagesize > 0
if count is None:
count = self.null_count
fetched = 0
while count == self.null_count or fetched < count:
response = self.get(count=pagesize or count, offset=offset, **kwargs)
items = self._load_list(response)
N = len(items)
fetched += N
for item in items:
yield item
if pagesize is None or N < pagesize:
break
offset += N
logging.debug("pagesize=%d, fetched=%d, offset=%d, N=%d, kwargs=%s", pagesize, fetched, offset, N, kwargs)
# kwargs: count, offset, search, sort_dir, sort_key, sort_mode
示例8: update_pickle_file
# 需要導入模塊: import data [as 別名]
# 或者: from data import load [as 別名]
def update_pickle_file(file_name, eps=0, k=0, v=0):
d_old = data_old.Data(file_name)
d_old.load()
print(file_name, 'loaded')
# d_old.print_fields()
d_new = data.Data()
d_new.set_agent('Wolp',
int(d_old.get_data('max_actions')[0]),
k,
v)
d_new.set_experiment(d_old.get_data('experiment')[0],
[-3],
[3],
eps)
space = action_space.Space([-3], [3], int(d_old.get_data('max_actions')[0]))
# print(space.get_space())
# d_new.print_data()
done = d_old.get_data('done')
actors_result = d_old.get_data('actors_result')
actions = d_old.get_data('actions')
state_0 = d_old.get_data('state_0').tolist()
state_1 = d_old.get_data('state_1').tolist()
state_2 = d_old.get_data('state_2').tolist()
state_3 = d_old.get_data('state_3').tolist()
rewards = d_old.get_data('rewards').tolist()
ep = 0
temp = 0
l = len(done)
for i in range(l):
d_new.set_action(space.import_point(actions[i]).tolist())
d_new.set_actors_action(space.import_point(actors_result[i]).tolist())
d_new.set_ndn_action(space.import_point(
space.search_point(actors_result[i], 1)[0]).tolist())
state = [state_0[i], state_1[i], state_2[i], state_3[i]]
d_new.set_state(state)
d_new.set_reward(1)
if done[i] > 0:
# print(ep, i - temp, 'progress', i / l)
temp = i
ep += 1
# if ep % 200 == 199:
# d_new.finish_and_store_episode()
# else:
d_new.end_of_episode()
d_new.save()
開發者ID:jimkon,項目名稱:Deep-Reinforcement-Learning-in-Large-Discrete-Action-Spaces,代碼行數:52,代碼來源:data_update.py
示例9: get_minibatch
# 需要導入模塊: import data [as 別名]
# 或者: from data import load [as 別名]
def get_minibatch(file_name, batch_size, shuffle, with_pauses=False):
dataset = data.load(file_name)
if shuffle:
np.random.shuffle(dataset)
X_batch = []
Y_batch = []
if with_pauses:
P_batch = []
if len(dataset) < batch_size:
print("WARNING: Not enough samples in '%s'. Reduce mini-batch size to %d or use a dataset with at least %d words." % (
file_name,
len(dataset),
MINIBATCH_SIZE * data.MAX_SEQUENCE_LEN))
for subsequence in dataset:
X_batch.append(subsequence[0])
Y_batch.append(subsequence[1])
if with_pauses:
P_batch.append(subsequence[2])
if len(X_batch) == batch_size:
# Transpose, because the model assumes the first axis is time
X = np.array(X_batch, dtype=np.int32).T
Y = np.array(Y_batch, dtype=np.int32).T
if with_pauses:
P = np.array(P_batch, dtype=theano.config.floatX).T
if with_pauses:
yield X, Y, P
else:
yield X, Y
X_batch = []
Y_batch = []
if with_pauses:
P_batch = []
示例10: __classification_accuracy
# 需要導入模塊: import data [as 別名]
# 或者: from data import load [as 別名]
def __classification_accuracy(self, sess, iter_init, idx, y_ph=None):
"""
:param sess: TensorFlow session
:param iter_init: TensorFlow data iterator initializer associated
:param idx: insertion index (i.e. epoch - 1)
:param y_ph: TensorFlow placeholder for unseen labels
:return: None
"""
if self.perf is None or y_ph is None:
return
# initialize results
y = np.zeros([0, 1])
y_hats = [np.zeros([0, 1])] * self.num_B_sub_heads
# initialize unsupervised data iterator
sess.run(iter_init)
# loop over the batches within the unsupervised data iterator
print('Evaluating classification accuracy... ')
while True:
try:
# grab the results
results = sess.run([self.y_hats, y_ph], feed_dict={self.is_training: False})
# load metrics
for i in range(self.num_B_sub_heads):
y_hats[i] = np.concatenate((y_hats[i], np.expand_dims(results[0][i], axis=1)))
if y_ph is not None:
y = np.concatenate((y, np.expand_dims(results[1], axis=1)))
# _, ax = plt.subplots(2, 10)
# i_rand = np.random.choice(results[3].shape[0], 10)
# for i in range(10):
# ax[0, i].imshow(results[3][i_rand[i]][:, :, 0], origin='upper', vmin=0, vmax=1)
# ax[0, i].set_xticks([])
# ax[0, i].set_yticks([])
# ax[1, i].imshow(results[4][i_rand[i]][:, :, 0], origin='upper', vmin=0, vmax=1)
# ax[1, i].set_xticks([])
# ax[1, i].set_yticks([])
# plt.show()
# iterator will throw this error when its out of data
except tf.errors.OutOfRangeError:
break
# compute classification accuracy
if y_ph is not None:
class_errors = [unsupervised_labels(y, y_hats[i], self.k_B, self.k_B)
for i in range(self.num_B_sub_heads)]
self.perf['class_err_min'][idx] = np.min(class_errors)
self.perf['class_err_avg'][idx] = np.mean(class_errors)
self.perf['class_err_max'][idx] = np.max(class_errors)
# metrics are done
print('Done')