當前位置: 首頁>>代碼示例>>Python>>正文


Python data.get_batch方法代碼示例

本文整理匯總了Python中data.get_batch方法的典型用法代碼示例。如果您正苦於以下問題:Python data.get_batch方法的具體用法?Python data.get_batch怎麽用?Python data.get_batch使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在data的用法示例。


在下文中一共展示了data.get_batch方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _eval_test_set

# 需要導入模塊: import data [as 別名]
# 或者: from data import get_batch [as 別名]
def _eval_test_set(sess, model, test_buckets):
    """ Evaluate on the test set. """
    for bucket_id in range(len(config.BUCKETS)):
        if len(test_buckets[bucket_id]) == 0:
            print("  Test: empty bucket %d" % (bucket_id))
            continue
        start = time.time()
        encoder_inputs, decoder_inputs, decoder_masks = data.get_batch(test_buckets[bucket_id], 
                                                                        bucket_id,
                                                                        batch_size=config.BATCH_SIZE)
        _, step_loss, _ = run_step(sess, model, encoder_inputs, decoder_inputs, 
                                   decoder_masks, bucket_id, True)
        print('Test bucket {}: loss {}, time {}'.format(bucket_id, step_loss, time.time() - start)) 
開發者ID:chiphuyen,項目名稱:stanford-tensorflow-tutorials,代碼行數:15,代碼來源:chatbot.py

示例2: train

# 需要導入模塊: import data [as 別名]
# 或者: from data import get_batch [as 別名]
def train():
    """ Train the bot """
    test_buckets, data_buckets, train_buckets_scale = _get_buckets()
    # in train mode, we need to create the backward path, so forwrad_only is False
    model = ChatBotModel(False, config.BATCH_SIZE)
    model.build_graph()

    saver = tf.train.Saver()

    with tf.Session() as sess:
        print('Running session')
        sess.run(tf.global_variables_initializer())
        _check_restore_parameters(sess, saver)

        iteration = model.global_step.eval()
        total_loss = 0
        while True:
            skip_step = _get_skip_step(iteration)
            bucket_id = _get_random_bucket(train_buckets_scale)
            encoder_inputs, decoder_inputs, decoder_masks = data.get_batch(data_buckets[bucket_id], 
                                                                           bucket_id,
                                                                           batch_size=config.BATCH_SIZE)
            start = time.time()
            _, step_loss, _ = run_step(sess, model, encoder_inputs, decoder_inputs, decoder_masks, bucket_id, False)
            total_loss += step_loss
            iteration += 1

            if iteration % skip_step == 0:
                print('Iter {}: loss {}, time {}'.format(iteration, total_loss/skip_step, time.time() - start))
                start = time.time()
                total_loss = 0
                saver.save(sess, os.path.join(config.CPT_PATH, 'chatbot'), global_step=model.global_step)
                if iteration % (10 * skip_step) == 0:
                    # Run evals on development set and print their loss
                    _eval_test_set(sess, model, test_buckets)
                    start = time.time()
                sys.stdout.flush() 
開發者ID:chiphuyen,項目名稱:stanford-tensorflow-tutorials,代碼行數:39,代碼來源:chatbot.py

示例3: train

# 需要導入模塊: import data [as 別名]
# 或者: from data import get_batch [as 別名]
def train(self,LR=2e-4,B1=0.5,B2=0.999,iterations=50000,sample_frequency=10,
	sample_overlap=500,save_frequency=1000,domain_a="a",domain_b="b"):
		self.trainer_D = tf.train.AdamOptimizer(LR,beta1=B1,beta2=B2).minimize(self.l_disc,var_list=self.disc_params)
		self.trainer_G = tf.train.AdamOptimizer(LR,beta1=B1,beta2=B2).minimize(self.l_g,var_list=self.gen_params)

		with self.sess as sess:
			sess.run(tf.global_variables_initializer())
			if self.analytics:
				if not os.path.exists("logs"):
					os.makedirs("logs")	
				self.summary_writer = tf.summary.FileWriter(os.getcwd()+'/logs',graph=sess.graph)
			for i in range(iterations):
				realA = data.get_batch(self.batch_size,domain_a)
				realB = data.get_batch(self.batch_size,domain_b)
				op_list = [self.trainer_D,self.l_disc,self.trainer_G,self.l_g,self.merged_summary_op]

				_,dLoss,_,gLoss,summary_str = sess.run(op_list,feed_dict={self.x_a:realA,self.x_b:realB})	
			
				realA = data.get_batch(self.batch_size,domain_a)
				realB = data.get_batch(self.batch_size,domain_b)

				_,gLoss = sess.run([self.trainer_G,self.l_g],feed_dict={self.x_a:realA,self.x_b:realB})

				if i%10 == 0:
					self.summary_writer.add_summary(summary_str, i)

				print("Generator Loss: " + str(gLoss) + "\tDiscriminator Loss: " + str(dLoss)) 
			
				if i % sample_frequency == 0:
					realA = data.get_batch(1,domain_a)
					realB = data.get_batch(1,domain_b)
					ops = [self.g_ba,self.g_ab,self.g_aba,self.g_bab]
					out_a,out_b,out_ab,out_ba = sess.run(ops,feed_dict={self.x_a:realA,self.x_b:realB})
					data.save(self.gen_a_dir+"/img"+str(i%sample_overlap)+'.png',out_a[0])
					data.save(self.gen_b_dir+"/img"+str(i%sample_overlap)+'.png',out_b[0])
					data.save(self.rec_a_dir+"/img"+str(i%sample_overlap)+'.png',out_ba[0])
					data.save(self.rec_b_dir+"/img"+str(i%sample_overlap)+'.png',out_ab[0])
				if i % save_frequency == 0:
					if not os.path.exists(self.model_directory):
						os.makedirs(self.model_directory)
					self.saver.save(sess,self.model_directory+'/model-'+str(i)+'.ckpt')
					print("Saved Model")

		"""
		Restore previously saved weights from
		trained / in-progress model
		"""
		def restore():
			try:
				self.saver.restore(self.sess, tf.train.latest_checkpoint(self.model_directory))
			except:
				print("Previous weights not found") 
開發者ID:jmiller656,項目名稱:DiscoGAN-Tensorflow,代碼行數:54,代碼來源:discoGAN.py

示例4: train

# 需要導入模塊: import data [as 別名]
# 或者: from data import get_batch [as 別名]
def train(epoch):
    model.train()
    acc_loss = 0
    acc_kl_theta_loss = 0
    cnt = 0
    indices = torch.randperm(args.num_docs_train)
    indices = torch.split(indices, args.batch_size)
    for idx, ind in enumerate(indices):
        optimizer.zero_grad()
        model.zero_grad()
        data_batch = data.get_batch(train_tokens, train_counts, ind, args.vocab_size, device)
        sums = data_batch.sum(1).unsqueeze(1)
        if args.bow_norm:
            normalized_data_batch = data_batch / sums
        else:
            normalized_data_batch = data_batch
        recon_loss, kld_theta = model(data_batch, normalized_data_batch)
        total_loss = recon_loss + kld_theta
        total_loss.backward()

        if args.clip > 0:
            torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
        optimizer.step()

        acc_loss += torch.sum(recon_loss).item()
        acc_kl_theta_loss += torch.sum(kld_theta).item()
        cnt += 1

        if idx % args.log_interval == 0 and idx > 0:
            cur_loss = round(acc_loss / cnt, 2) 
            cur_kl_theta = round(acc_kl_theta_loss / cnt, 2) 
            cur_real_loss = round(cur_loss + cur_kl_theta, 2)

            print('Epoch: {} .. batch: {}/{} .. LR: {} .. KL_theta: {} .. Rec_loss: {} .. NELBO: {}'.format(
                epoch, idx, len(indices), optimizer.param_groups[0]['lr'], cur_kl_theta, cur_loss, cur_real_loss))
    
    cur_loss = round(acc_loss / cnt, 2) 
    cur_kl_theta = round(acc_kl_theta_loss / cnt, 2) 
    cur_real_loss = round(cur_loss + cur_kl_theta, 2)
    print('*'*100)
    print('Epoch----->{} .. LR: {} .. KL_theta: {} .. Rec_loss: {} .. NELBO: {}'.format(
            epoch, optimizer.param_groups[0]['lr'], cur_kl_theta, cur_loss, cur_real_loss))
    print('*'*100) 
開發者ID:adjidieng,項目名稱:ETM,代碼行數:45,代碼來源:main.py

示例5: evaluate

# 需要導入模塊: import data [as 別名]
# 或者: from data import get_batch [as 別名]
def evaluate(m, source, tc=False, td=False):
    """Compute perplexity on document completion.
    """
    m.eval()
    with torch.no_grad():
        if source == 'val':
            indices = torch.split(torch.tensor(range(args.num_docs_valid)), args.eval_batch_size)
            tokens = valid_tokens
            counts = valid_counts
        else: 
            indices = torch.split(torch.tensor(range(args.num_docs_test)), args.eval_batch_size)
            tokens = test_tokens
            counts = test_counts

        ## get \beta here
        beta = m.get_beta()

        ### do dc and tc here
        acc_loss = 0
        cnt = 0
        indices_1 = torch.split(torch.tensor(range(args.num_docs_test_1)), args.eval_batch_size)
        for idx, ind in enumerate(indices_1):
            ## get theta from first half of docs
            data_batch_1 = data.get_batch(test_1_tokens, test_1_counts, ind, args.vocab_size, device)
            sums_1 = data_batch_1.sum(1).unsqueeze(1)
            if args.bow_norm:
                normalized_data_batch_1 = data_batch_1 / sums_1
            else:
                normalized_data_batch_1 = data_batch_1
            theta, _ = m.get_theta(normalized_data_batch_1)

            ## get prediction loss using second half
            data_batch_2 = data.get_batch(test_2_tokens, test_2_counts, ind, args.vocab_size, device)
            sums_2 = data_batch_2.sum(1).unsqueeze(1)
            res = torch.mm(theta, beta)
            preds = torch.log(res)
            recon_loss = -(preds * data_batch_2).sum(1)
            
            loss = recon_loss / sums_2.squeeze()
            loss = loss.mean().item()
            acc_loss += loss
            cnt += 1
        cur_loss = acc_loss / cnt
        ppl_dc = round(math.exp(cur_loss), 1)
        print('*'*100)
        print('{} Doc Completion PPL: {}'.format(source.upper(), ppl_dc))
        print('*'*100)
        if tc or td:
            beta = beta.data.cpu().numpy()
            if tc:
                print('Computing topic coherence...')
                get_topic_coherence(beta, train_tokens, vocab)
            if td:
                print('Computing topic diversity...')
                get_topic_diversity(beta, 25)
        return ppl_dc 
開發者ID:adjidieng,項目名稱:ETM,代碼行數:58,代碼來源:main.py

示例6: evaluate

# 需要導入模塊: import data [as 別名]
# 或者: from data import get_batch [as 別名]
def evaluate(epoch, eval_type='valid', final_eval=False):
    nli_net.eval()
    correct = 0.
    global val_acc_best, lr, stop_training, adam_stop

    if eval_type == 'valid':
        print('\nVALIDATION : Epoch {0}'.format(epoch))

    s1 = valid['s1'] if eval_type == 'valid' else test['s1']
    s2 = valid['s2'] if eval_type == 'valid' else test['s2']
    target = valid['label'] if eval_type == 'valid' else test['label']

    for i in range(0, len(s1), params.batch_size):
        # prepare batch
        s1_batch, s1_len = get_batch(s1[i:i + params.batch_size], word_vec, params.word_emb_dim)
        s2_batch, s2_len = get_batch(s2[i:i + params.batch_size], word_vec, params.word_emb_dim)
        s1_batch, s2_batch = Variable(s1_batch.cuda()), Variable(s2_batch.cuda())
        tgt_batch = Variable(torch.LongTensor(target[i:i + params.batch_size])).cuda()

        # model forward
        output = nli_net((s1_batch, s1_len), (s2_batch, s2_len))

        pred = output.data.max(1)[1]
        correct += pred.long().eq(tgt_batch.data.long()).cpu().sum()

    # save model
    eval_acc = round(100 * correct / len(s1), 2)
    if final_eval:
        print('finalgrep : accuracy {0} : {1}'.format(eval_type, eval_acc))
    else:
        print('togrep : results : epoch {0} ; mean accuracy {1} :\
              {2}'.format(epoch, eval_type, eval_acc))

    if eval_type == 'valid' and epoch <= params.n_epochs:
        if eval_acc > val_acc_best:
            print('saving model at epoch {0}'.format(epoch))
            if not os.path.exists(params.outputdir):
                os.makedirs(params.outputdir)
            torch.save(nli_net.state_dict(), os.path.join(params.outputdir,
                       params.outputmodelname))
            val_acc_best = eval_acc
        else:
            if 'sgd' in params.optimizer:
                optimizer.param_groups[0]['lr'] = optimizer.param_groups[0]['lr'] / params.lrshrink
                print('Shrinking lr by : {0}. New lr = {1}'
                      .format(params.lrshrink,
                              optimizer.param_groups[0]['lr']))
                if optimizer.param_groups[0]['lr'] < params.minlr:
                    stop_training = True
            if 'adam' in params.optimizer:
                # early stopping (at 2nd decrease in accuracy)
                stop_training = adam_stop
                adam_stop = True
    return eval_acc 
開發者ID:natashamjaques,項目名稱:neural_chat,代碼行數:56,代碼來源:train_nli.py

示例7: evaluate

# 需要導入模塊: import data [as 別名]
# 或者: from data import get_batch [as 別名]
def evaluate(epoch, eval_type='valid', final_eval=False):
    nli_net.eval()
    correct = 0.
    global val_acc_best, lr, stop_training, adam_stop

    if eval_type == 'valid':
        print('\nVALIDATION : Epoch {0}'.format(epoch))

    s1 = valid['s1'] if eval_type == 'valid' else test['s1']
    s2 = valid['s2'] if eval_type == 'valid' else test['s2']
    target = valid['label'] if eval_type == 'valid' else test['label']

    for i in range(0, len(s1), params.batch_size):
        # prepare batch
        s1_batch, s1_len = get_batch(s1[i:i + params.batch_size], word_vec)
        s2_batch, s2_len = get_batch(s2[i:i + params.batch_size], word_vec)
        s1_batch, s2_batch = Variable(s1_batch.cuda()), Variable(s2_batch.cuda())
        tgt_batch = Variable(torch.LongTensor(target[i:i + params.batch_size])).cuda()

        # model forward
        output = nli_net((s1_batch, s1_len), (s2_batch, s2_len))

        pred = output.data.max(1)[1]
        correct += pred.long().eq(tgt_batch.data.long()).cpu().sum()

    # save model
    eval_acc = round(100 * correct / len(s1), 2)
    if final_eval:
        print('finalgrep : accuracy {0} : {1}'.format(eval_type, eval_acc))
    else:
        print('togrep : results : epoch {0} ; mean accuracy {1} :\
              {2}'.format(epoch, eval_type, eval_acc))

    if eval_type == 'valid' and epoch <= params.n_epochs:
        if eval_acc > val_acc_best:
            print('saving model at epoch {0}'.format(epoch))
            if not os.path.exists(params.outputdir):
                os.makedirs(params.outputdir)
            torch.save(nli_net.state_dict(), os.path.join(params.outputdir,
                       params.outputmodelname))
            val_acc_best = eval_acc
        else:
            if 'sgd' in params.optimizer:
                optimizer.param_groups[0]['lr'] = optimizer.param_groups[0]['lr'] / params.lrshrink
                print('Shrinking lr by : {0}. New lr = {1}'
                      .format(params.lrshrink,
                              optimizer.param_groups[0]['lr']))
                if optimizer.param_groups[0]['lr'] < params.minlr:
                    stop_training = True
            if 'adam' in params.optimizer:
                # early stopping (at 2nd decrease in accuracy)
                stop_training = adam_stop
                adam_stop = True
    return eval_acc 
開發者ID:akanimax,項目名稱:T2F,代碼行數:56,代碼來源:train_nli.py

示例8: chat

# 需要導入模塊: import data [as 別名]
# 或者: from data import get_batch [as 別名]
def chat():
    """ in test mode, we don't to create the backward path
    """
    _, enc_vocab = data.load_vocab(os.path.join(config.PROCESSED_PATH, 'vocab.enc'))
    inv_dec_vocab, _ = data.load_vocab(os.path.join(config.PROCESSED_PATH, 'vocab.dec'))

    model = ChatBotModel(True, batch_size=1)
    model.build_graph()

    saver = tf.train.Saver()

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        _check_restore_parameters(sess, saver)
        output_file = open(os.path.join(config.PROCESSED_PATH, config.OUTPUT_FILE), 'a+')
        # Decode from standard input.
        max_length = config.BUCKETS[-1][0]
        print('Welcome to TensorBro. Say something. Enter to exit. Max length is', max_length)
        while True:
            line = _get_user_input()
            if len(line) > 0 and line[-1] == '\n':
                line = line[:-1]
            if line == '':
                break
            output_file.write('HUMAN ++++ ' + line + '\n')
            # Get token-ids for the input sentence.
            token_ids = data.sentence2id(enc_vocab, str(line))
            if (len(token_ids) > max_length):
                print('Max length I can handle is:', max_length)
                line = _get_user_input()
                continue
            # Which bucket does it belong to?
            bucket_id = _find_right_bucket(len(token_ids))
            # Get a 1-element batch to feed the sentence to the model.
            encoder_inputs, decoder_inputs, decoder_masks = data.get_batch([(token_ids, [])], 
                                                                            bucket_id,
                                                                            batch_size=1)
            # Get output logits for the sentence.
            _, _, output_logits = run_step(sess, model, encoder_inputs, decoder_inputs,
                                           decoder_masks, bucket_id, True)
            response = _construct_response(output_logits, inv_dec_vocab)
            print(response)
            output_file.write('BOT ++++ ' + response + '\n')
        output_file.write('=============================================\n')
        output_file.close() 
開發者ID:chiphuyen,項目名稱:stanford-tensorflow-tutorials,代碼行數:47,代碼來源:chatbot.py


注:本文中的data.get_batch方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。