當前位置: 首頁>>代碼示例>>Python>>正文


Python data.cuda方法代碼示例

本文整理匯總了Python中data.cuda方法的典型用法代碼示例。如果您正苦於以下問題:Python data.cuda方法的具體用法?Python data.cuda怎麽用?Python data.cuda使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在data的用法示例。


在下文中一共展示了data.cuda方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: singletest

# 需要導入模塊: import data [as 別名]
# 或者: from data import cuda [as 別名]
def singletest(data,net,config,splitfun,combinefun,n_per_run,margin = 64,isfeat=False):
    z, h, w = data.size(2), data.size(3), data.size(4)
    print(data.size())
    data = splitfun(data,config['max_stride'],margin)
    data = Variable(data.cuda(async = True), volatile = True,requires_grad=False)
    splitlist = range(0,args.split+1,n_per_run)
    outputlist = []
    featurelist = []
    for i in range(len(splitlist)-1):
        if isfeat:
            output,feature = net(data[splitlist[i]:splitlist[i+1]])
            featurelist.append(feature)
        else:
            output = net(data[splitlist[i]:splitlist[i+1]])
        output = output.data.cpu().numpy()
        outputlist.append(output)
        
    output = np.concatenate(outputlist,0)
    output = combinefun(output, z / config['stride'], h / config['stride'], w / config['stride'])
    if isfeat:
        feature = np.concatenate(featurelist,0).transpose([0,2,3,4,1])
        feature = combinefun(feature, z / config['stride'], h / config['stride'], w / config['stride'])
        return output,feature
    else:
        return output 
開發者ID:uci-cbcl,項目名稱:DeepLung,代碼行數:27,代碼來源:main.py

示例2: singletest

# 需要導入模塊: import data [as 別名]
# 或者: from data import cuda [as 別名]
def singletest(data, net, config, splitfun, combinefun, n_per_run, margin=64):
    z, h, w = data.size(2), data.size(3), data.size(4)
    print(data.size())
    data = splitfun(data, config['max_stride'], margin)
    data = Variable(data.cuda(async=True), volatile=True, requires_grad=False)
    splitlist = range(0, args.split + 1, n_per_run)
    outputlist = []

    for i in range(len(splitlist) - 1):
        output = net(data[splitlist[i]:splitlist[i + 1]])
        output = output.data.cpu().numpy()
        outputlist.append(output)

    output = np.concatenate(outputlist, 0)
    output = combinefun(output, z / config['stride'], h / config['stride'], w / config['stride'])
    return output 
開發者ID:xairc,項目名稱:lung_nodule_detector,代碼行數:18,代碼來源:main.py

示例3: train

# 需要導入模塊: import data [as 別名]
# 或者: from data import cuda [as 別名]
def train(epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        if args.cuda:
            data, target = data.cuda(), target.cuda()
        data, target = Variable(data), Variable(target)
        optimizer.zero_grad()
        output = model(data)
        loss = criterion(output, target)
        loss.backward()
        optimizer.step()
        if args.prune == 'node':
            beta_penalty_op.penalize()
            if args.arch == 'NIN':
                dropout_update_op.update()
        if batch_idx % args.log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.data[0]))
    return 
開發者ID:ARM-software,項目名稱:scalpel,代碼行數:22,代碼來源:main.py

示例4: batchify

# 需要導入模塊: import data [as 別名]
# 或者: from data import cuda [as 別名]
def batchify(data, bsz):
    # Work out how cleanly we can divide the dataset into bsz parts.
    if isinstance(data, tuple):
        nbatch = data[0].size(0) // bsz
        # Trim off any extra elements that wouldn't cleanly fit (remainders).
        tag_data = data[1].narrow(0, 0, nbatch * bsz)
        data = data[0].narrow(0, 0, nbatch * bsz)
        # Evenly divide the data across the bsz batches.
        tag_data = tag_data.view(bsz, -1).t().contiguous()
    else:
        nbatch = data.size(0) // bsz
        # Trim off any extra elements that wouldn't cleanly fit (remainders).
        data = data.narrow(0, 0, nbatch * bsz)
    
    # Evenly divide the data across the bsz batches.
    data = data.view(bsz, -1).t().contiguous()
    # Turning the data over to CUDA at this point may lead to more OOM errors
    #if args.cuda:
     #    data = data.cuda()
    if isinstance(data,tuple):
        return data, tag_data
    return data 
開發者ID:BeckyMarvin,項目名稱:LM_syneval,代碼行數:24,代碼來源:main.py

示例5: evaluate

# 需要導入模塊: import data [as 別名]
# 或者: from data import cuda [as 別名]
def evaluate(lm_data_source, ccg_data_source):
    # Turn on evaluation mode which disables dropout.
    model.eval()
    total_loss = 0
    ntokens = len(corpus.dictionary)
    if (not args.single) and (torch.cuda.device_count() > 1):
        #"module" is necessary when using DataParallel
        hidden = model.module.init_hidden(eval_batch_size)
    else:
        hidden = model.init_hidden(eval_batch_size)
    for i in range(0, lm_data_source.size(0) + ccg_data_source.size(0) - 1, args.bptt):
        # TAG
        if i > lm_data_source.size(0):
            data, targets = get_batch(ccg_data_source, i - lm_data_source.size(0), evaluation=True)
        # LM
        else:
            data, targets = get_batch(lm_data_source, i, evaluation=True)
        output, hidden = model(data, hidden)
        output_flat = output.view(-1, ntokens)
        curr_loss = len(data) * criterion(output_flat, targets).data
        total_loss += curr_loss
        hidden = repackage_hidden(hidden)
    if len(ccg_data_source) == 0:
        return total_loss / len(lm_data_source)
    return total_loss[0] / (len(lm_data_source)+len(ccg_data_source)) 
開發者ID:BeckyMarvin,項目名稱:LM_syneval,代碼行數:27,代碼來源:main.py

示例6: batchify

# 需要導入模塊: import data [as 別名]
# 或者: from data import cuda [as 別名]
def batchify(data, bsz, random_start_idx=False):
    # Work out how cleanly we can divide the dataset into bsz parts.
    nbatch = data.size(0) // bsz
    # Trim off any extra elements that wouldn't cleanly fit (remainders).
    if random_start_idx:
        start_idx = random.randint(0, data.size(0) % bsz - 1)
    else:
        start_idx = 0
    data = data.narrow(0, start_idx, nbatch * bsz)
    # Evenly divide the data across the bsz batches.
    data = data.view(bsz, -1).t().contiguous()
    if args.cuda:
        data = data.cuda()
    return data 
開發者ID:nyu-mll,項目名稱:PRPN-Analysis,代碼行數:16,代碼來源:main_LM.py

示例7: validate

# 需要導入模塊: import data [as 別名]
# 或者: from data import cuda [as 別名]
def validate(data_loader, net, loss):
    start_time = time.time()
    
    net.eval()

    metrics = []
    for i, (data, target, coord) in enumerate(data_loader):
        data = Variable(data.cuda(async = True), volatile = True)
        target = Variable(target.cuda(async = True), volatile = True)
        coord = Variable(coord.cuda(async = True), volatile = True)

        output = net(data, coord)
        loss_output = loss(output, target, train = False)

        loss_output[0] = loss_output[0].data[0]
        metrics.append(loss_output)    
    end_time = time.time()

    metrics = np.asarray(metrics, np.float32)
    print('Validation: tpr %3.2f, tnr %3.8f, total pos %d, total neg %d, time %3.2f' % (
        100.0 * np.sum(metrics[:, 6]) / np.sum(metrics[:, 7]),
        100.0 * np.sum(metrics[:, 8]) / np.sum(metrics[:, 9]),
        np.sum(metrics[:, 7]),
        np.sum(metrics[:, 9]),
        end_time - start_time))
    print('loss %2.4f, classify loss %2.4f, regress loss %2.4f, %2.4f, %2.4f, %2.4f' % (
        np.mean(metrics[:, 0]),
        np.mean(metrics[:, 1]),
        np.mean(metrics[:, 2]),
        np.mean(metrics[:, 3]),
        np.mean(metrics[:, 4]),
        np.mean(metrics[:, 5])))
    print
    print 
開發者ID:uci-cbcl,項目名稱:DeepLung,代碼行數:36,代碼來源:main.py

示例8: batchify

# 需要導入模塊: import data [as 別名]
# 或者: from data import cuda [as 別名]
def batchify(data, bsz):
    # Work out how cleanly we can divide the dataset into bsz parts.
    nbatch = data.size(0) // bsz
    # Trim off any extra elements that wouldn't cleanly fit (remainders).
    data = data.narrow(0, 0, nbatch * bsz)
    # Evenly divide the data across the bsz batches.
    data = data.view(bsz, -1).t().contiguous()
    if args.cuda:
        data = data.cuda()
    return data 
開發者ID:jiacheng-xu,項目名稱:vmf_vae_nlp,代碼行數:12,代碼來源:main.py

示例9: batchify

# 需要導入模塊: import data [as 別名]
# 或者: from data import cuda [as 別名]
def batchify(data, bsz, args):
    # Work out how cleanly we can divide the dataset into bsz parts.
    nbatch = data.size(0) // bsz
    # Trim off any extra elements that wouldn't cleanly fit (remainders).
    data = data.narrow(0, 0, nbatch * bsz)
    # Evenly divide the data across the bsz batches.
    data = data.view(bsz, -1).t().contiguous()
    if args.cuda:
        data = data.cuda()
    return data 
開發者ID:matthewmackay,項目名稱:reversible-rnn,代碼行數:12,代碼來源:train.py

示例10: batchify

# 需要導入模塊: import data [as 別名]
# 或者: from data import cuda [as 別名]
def batchify(data, bsz):
    # Work out how cleanly we can divide the dataset into bsz parts.
    nbatch = data.size(0) // bsz
    # Trim off any extra elements that wouldn't cleanly fit (remainders).
    data = data.narrow(0, 0, nbatch * bsz)
    # Evenly divide the data across the bsz batches.
    data = data.view(bsz, -1).t().contiguous()
    if args.cuda:
        data = data.cuda()
    return data
####################################################################### 
開發者ID:zihangdai,項目名稱:mos,代碼行數:13,代碼來源:dynamiceval.py

示例11: test

# 需要導入模塊: import data [as 別名]
# 或者: from data import cuda [as 別名]
def test(evaluate=False):
    global best_acc
    model.eval()
    test_loss = 0
    correct = 0

    for data, target in test_loader:
        if args.cuda:
            data, target = data.cuda(), target.cuda()
        data, target = Variable(data, volatile=True), Variable(target)
        output = model(data)
        test_loss += criterion(output, target).data[0]
        pred = output.data.max(1, keepdim=True)[1]
        correct += pred.eq(target.data.view_as(pred)).cpu().sum()
    
    acc = 100. * correct / len(test_loader.dataset)
    if ((args.prune == 'node') and (not args.retrain)) or (acc > best_acc):
        best_acc = acc
        if not evaluate:
            save_state(model, best_acc)

    test_loss /= len(test_loader.dataset)
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)'.format(
        test_loss * args.batch_size, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))
    print('Best Accuracy: {:.2f}%\n'.format(best_acc))
    return 
開發者ID:ARM-software,項目名稱:scalpel,代碼行數:29,代碼來源:main.py

示例12: test_get_batch

# 需要導入模塊: import data [as 別名]
# 或者: from data import cuda [as 別名]
def test_get_batch(source, evaluation=False):
    if isinstance(source, tuple):
        seq_len = len(source[0]) - 1
        data = Variable(source[0][:seq_len], volatile=evaluation)
        target = Variable(source[1][:seq_len], volatile=evaluation)
        
    else:
        seq_len = len(source) - 1
        data = Variable(source[:seq_len], volatile=evaluation)
        target = Variable(source[1:1+seq_len].view(-1))
    # This is where data should be CUDA-fied to lessen OOM errors
    if args.cuda:
        return data.cuda(), target.cuda()
    else:
        return data, target 
開發者ID:BeckyMarvin,項目名稱:LM_syneval,代碼行數:17,代碼來源:main.py

示例13: get_batch

# 需要導入模塊: import data [as 別名]
# 或者: from data import cuda [as 別名]
def get_batch(source, i, evaluation=False):
    if isinstance(source, tuple):
        seq_len = min(args.bptt, len(source[0]) - 1 - i)
        data = Variable(source[0][i:i+seq_len], volatile=evaluation)
        target = Variable(source[1][i:i+seq_len].view(-1))
    else:
        seq_len = min(args.bptt, len(source) - 1 - i)
        data = Variable(source[i:i+seq_len], volatile=evaluation)
        target = Variable(source[i+1:i+1+seq_len].view(-1))
    #This is where data should be CUDA-fied to lessen OOM errors
    if args.cuda:
        return data.cuda(), target.cuda()
    else:
        return data, target 
開發者ID:BeckyMarvin,項目名稱:LM_syneval,代碼行數:16,代碼來源:main.py

示例14: train

# 需要導入模塊: import data [as 別名]
# 或者: from data import cuda [as 別名]
def train(data_loader, net, loss, epoch, optimizer, get_lr, save_freq, save_dir):
    start_time = time.time()
    
    net.train()
    lr = get_lr(epoch)
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr

    metrics = []

    for i, (data, target, coord) in enumerate(data_loader):
        data = Variable(data.cuda(async = True))
        target = Variable(target.cuda(async = True))
        coord = Variable(coord.cuda(async = True))

        output = net(data, coord)
        loss_output = loss(output, target)
        optimizer.zero_grad()
        loss_output[0].backward()
        optimizer.step()

        loss_output[0] = loss_output[0].data[0]
        metrics.append(loss_output)

    if epoch % args.save_freq == 0:            
        state_dict = net.module.state_dict()
        for key in state_dict.keys():
            state_dict[key] = state_dict[key].cpu()
            
        torch.save({
            'epoch': epoch,
            'save_dir': save_dir,
            'state_dict': state_dict,
            'args': args},
            os.path.join(save_dir, '%03d.ckpt' % epoch))

    end_time = time.time()

    metrics = np.asarray(metrics, np.float32)
    print('Epoch %03d (lr %.5f)' % (epoch, lr))
    print('Train:      tpr %3.2f, tnr %3.2f, total pos %d, total neg %d, time %3.2f' % (
        100.0 * np.sum(metrics[:, 6]) / np.sum(metrics[:, 7]),
        100.0 * np.sum(metrics[:, 8]) / np.sum(metrics[:, 9]),
        np.sum(metrics[:, 7]),
        np.sum(metrics[:, 9]),
        end_time - start_time))
    print('loss %2.4f, classify loss %2.4f, regress loss %2.4f, %2.4f, %2.4f, %2.4f' % (
        np.mean(metrics[:, 0]),
        np.mean(metrics[:, 1]),
        np.mean(metrics[:, 2]),
        np.mean(metrics[:, 3]),
        np.mean(metrics[:, 4]),
        np.mean(metrics[:, 5])))
    print 
開發者ID:uci-cbcl,項目名稱:DeepLung,代碼行數:56,代碼來源:main.py

示例15: train

# 需要導入模塊: import data [as 別名]
# 或者: from data import cuda [as 別名]
def train(data_loader, net, loss, epoch, optimizer, get_lr, save_freq, save_dir):
    start_time = time.time()

    net.train()
    lr = get_lr(epoch)
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr

    metrics = []
    for i, (data, target, coord) in enumerate(data_loader):
        data = Variable(data.cuda(async=True))
        target = Variable(target.cuda(async=True))
        coord = Variable(coord.cuda(async=True))
        output = net(data, coord)
        # print ("output", np.shape(output))
        loss_output = loss(output, target)
        optimizer.zero_grad()
        loss_output[0].backward()
        optimizer.step()

        loss_output[0] = loss_output[0].data[0]
        metrics.append(loss_output)

    if epoch % args.save_freq == 0:
        state_dict = net.module.state_dict()
        for key in state_dict.keys():
            state_dict[key] = state_dict[key].cpu()

        torch.save({
            'epoch': epoch,
            'save_dir': save_dir,
            'state_dict': state_dict,
            'args': args},
            os.path.join(save_dir, '%03d.ckpt' % epoch))

    end_time = time.time()

    metrics = np.asarray(metrics, np.float32)
    print('Epoch %03d (lr %.5f)' % (epoch, lr))
    print('Train:      tpr %3.2f, tnr %3.2f, total pos %d, total neg %d, time %3.2f' % (
        100.0 * np.sum(metrics[:, 6]) / np.sum(metrics[:, 7]),
        100.0 * np.sum(metrics[:, 8]) / np.sum(metrics[:, 9]),
        np.sum(metrics[:, 7]),
        np.sum(metrics[:, 9]),
        end_time - start_time))
    print('loss %2.4f, classify loss %2.4f, regress loss %2.4f, %2.4f, %2.4f, %2.4f' % (
        np.mean(metrics[:, 0]),
        np.mean(metrics[:, 1]),
        np.mean(metrics[:, 2]),
        np.mean(metrics[:, 3]),
        np.mean(metrics[:, 4]),
        np.mean(metrics[:, 5])))
    print 
開發者ID:xairc,項目名稱:lung_nodule_detector,代碼行數:55,代碼來源:main.py


注:本文中的data.cuda方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。