當前位置: 首頁>>代碼示例>>Python>>正文


Python base_dataset.normalize方法代碼示例

本文整理匯總了Python中data.base_dataset.normalize方法的典型用法代碼示例。如果您正苦於以下問題:Python base_dataset.normalize方法的具體用法?Python base_dataset.normalize怎麽用?Python base_dataset.normalize使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在data.base_dataset的用法示例。


在下文中一共展示了base_dataset.normalize方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: preprocess_inputs

# 需要導入模塊: from data import base_dataset [as 別名]
# 或者: from data.base_dataset import normalize [as 別名]
def preprocess_inputs(self, raw_inputs, params):
        outputs = dict()
        # label & inst.
        transform_label = get_transform_fn(self.opt, params, method=Image.NEAREST, normalize=False)
        outputs['label'] = transform_label(raw_inputs['label']) * 255.0
        outputs['inst'] = transform_label(raw_inputs['inst'])
        if self.opt.dataloader == 'sun_rgbd' or self.opt.dataloader == 'ade20k': # NOTE(sh): dirty exception!
            outputs['inst'] *= 255.0
        outputs['label_path'] = raw_inputs['label_path']
        outputs['inst_path'] = raw_inputs['inst_path']
        # image
        if self.load_image:
            transform_image = get_transform_fn(self.opt, params)
            outputs['image'] = transform_image(raw_inputs['image'])
            outputs['image_path'] = raw_inputs['image_path']
        # raw inputs
        if self.load_raw:
            transform_raw = get_raw_transform_fn(normalize=False)
            outputs['label_raw'] = transform_raw(raw_inputs['label']) * 255.0
            outputs['inst_raw'] = transform_raw(raw_inputs['inst'])
            transform_image_raw = get_raw_transform_fn()
            outputs['image_raw'] = transform_image_raw(raw_inputs['image'])
        return outputs 
開發者ID:xcyan,項目名稱:neurips18_hierchical_image_manipulation,代碼行數:25,代碼來源:segmentation_dataset.py

示例2: __getitem__

# 需要導入模塊: from data import base_dataset [as 別名]
# 或者: from data.base_dataset import normalize [as 別名]
def __getitem__(self, index):        
        ### input A (label maps)
        A_path = self.A_paths[index]              
        A = Image.open(A_path)        
        params = get_params(self.opt, A.size)
        if self.opt.label_nc == 0:
            transform_A = get_transform(self.opt, params)
            A_tensor = transform_A(A.convert('RGB'))
        else:
            transform_A = get_transform(self.opt, params, method=Image.NEAREST, normalize=False)
            A_tensor = transform_A(A) * 255.0

        B_tensor = inst_tensor = feat_tensor = 0
        ### input B (real images)
        if self.opt.isTrain:
            B_path = self.B_paths[index]   
            B = Image.open(B_path).convert('RGB')
            transform_B = get_transform(self.opt, params)      
            B_tensor = transform_B(B)

        ### if using instance maps        
        if not self.opt.no_instance:
            inst_path = self.inst_paths[index]
            inst = Image.open(inst_path)
            inst_tensor = transform_A(inst)

            if self.opt.load_features:
                feat_path = self.feat_paths[index]            
                feat = Image.open(feat_path).convert('RGB')
                norm = normalize()
                feat_tensor = norm(transform_A(feat))                            

        input_dict = {'label': A_tensor, 'inst': inst_tensor, 'image': B_tensor, 
                      'feat': feat_tensor, 'path': A_path}

        return input_dict 
開發者ID:Lotayou,項目名稱:everybody_dance_now_pytorch,代碼行數:38,代碼來源:aligned_dataset.py

示例3: __getitem__

# 需要導入模塊: from data import base_dataset [as 別名]
# 或者: from data.base_dataset import normalize [as 別名]
def __getitem__(self, index):        
        ### input A (label maps)
        A_path = self.A_paths[index]              
        A = Image.open(A_path)        
        params = get_params(self.opt, A.size)
        if self.opt.label_nc == 0:
            transform_A = get_transform(self.opt, params)
            A_tensor = transform_A(A.convert('RGB'))
        else:
            transform_A = get_transform(self.opt, params, method=Image.NEAREST, normalize=False)
            A_tensor = transform_A(A) * 255.0

        B_tensor = inst_tensor = feat_tensor = 0
        ### input B (real images)
        if self.opt.isTrain or self.opt.use_encoded_image:
            B_path = self.B_paths[index]   
            B = Image.open(B_path).convert('RGB')
            transform_B = get_transform(self.opt, params)      
            B_tensor = transform_B(B)

        ### if using instance maps        
        if not self.opt.no_instance:
            inst_path = self.inst_paths[index]
            inst = Image.open(inst_path)
            inst_tensor = transform_A(inst)

            if self.opt.load_features:
                feat_path = self.feat_paths[index]            
                feat = Image.open(feat_path).convert('RGB')
                norm = normalize()
                feat_tensor = norm(transform_A(feat))                            

        input_dict = {'label': A_tensor, 'inst': inst_tensor, 'image': B_tensor, 
                      'feat': feat_tensor, 'path': A_path}

        return input_dict 
開發者ID:thomasjhuang,項目名稱:deep-learning-for-document-dewarping,代碼行數:38,代碼來源:aligned_dataset.py

示例4: preprocess_cropping

# 需要導入模塊: from data import base_dataset [as 別名]
# 或者: from data.base_dataset import normalize [as 別名]
def preprocess_cropping(self, raw_inputs, outputs, params):
        transform_obj = get_transform_fn(
            self.opt, params, method=Image.NEAREST, normalize=False, is_context=False)
        label_obj = transform_obj(raw_inputs['label']) * 255.0
        input_bbox = np.array(params['bbox_in_context'])
        bbox_cls = params['bbox_cls']
        bbox_cls = bbox_cls if bbox_cls is not None else self.opt.label_nc-1
        mask_object_inst = (outputs['inst']==params['bbox_inst_id']).float() \
                if not (params['bbox_inst_id'] == None) else torch.zeros(outputs['inst'].size())
        ### generate output bbox
        img_size = outputs['label'].size(1) #shape[1]
        context_ratio = np.random.uniform(
          low=self.config['min_ctx_ratio'], high=self.config['max_ctx_ratio'])
        output_bbox = np.array(get_soft_bbox(input_bbox, img_size, img_size, context_ratio))
        mask_in, mask_object_in, mask_context_in = get_masked_image(
            outputs['label'], input_bbox, bbox_cls)
        mask_out, mask_object_out, _ = get_masked_image(
            outputs['label'], output_bbox)
        # Build dictionary
        outputs['input_bbox'] = torch.from_numpy(input_bbox)
        outputs['output_bbox'] = torch.from_numpy(output_bbox)
        outputs['mask_in'] = mask_in # (1x1xHxW)
        outputs['mask_object_in'] = mask_object_in # (1xCxHxW)
        outputs['mask_context_in'] = mask_context_in # (1xCxHxW)
        outputs['mask_out'] = mask_out # (1x1xHxW)
        outputs['mask_object_out'] = mask_object_out # (1xCxHxW)
        outputs['label_obj'] = label_obj
        outputs['mask_object_inst'] = mask_object_inst
        outputs['cls'] = torch.LongTensor([bbox_cls])
        return outputs 
開發者ID:xcyan,項目名稱:neurips18_hierchical_image_manipulation,代碼行數:32,代碼來源:segmentation_dataset.py

示例5: __getitem__

# 需要導入模塊: from data import base_dataset [as 別名]
# 或者: from data.base_dataset import normalize [as 別名]
def __getitem__(self, index):        
        ### input A (label maps)
        if index > self.dataset_size - self.clip_length:
            index = 0  # it's a rare chance and won't be effecting training dynamics

        A_path = self.A_paths[index: index + self.clip_length]
        A = [Image.open(path) for path in A_path]
        params = get_params(self.opt, A[0].size)
        if self.opt.label_nc == 0:
            transform_A = get_transform(self.opt, params)
            A_tensor = [transform_A(item.convert('RGB')) for item in A]
            A_tensor = torch.stack(A_tensor, dim=0)
        else:
            transform_A = get_transform(self.opt, params, method=Image.NEAREST, normalize=False)
            A_tensor = transform_A(A) * 255.0

        B_tensor = inst_tensor = feat_tensor = 0
        ### input B (real images)
        if self.opt.isTrain:
            B_path = self.B_paths[index: index + self.clip_length]
            B = [Image.open(path).convert('RGB') for path in B_path]
            transform_B = get_transform(self.opt, params)      
            B_tensor = [transform_B(item) for item in B]
            B_tensor = torch.stack(B_tensor, dim=0)
        else: # only retain first frame for testing
            B_path = self.B_paths[index]
            B = Image.open(B_path).convert('RGB')
            transform_B = get_transform(self.opt, params)
            B_tensor = transform_B(B)

        ### if using instance maps (which is never supposed to)
        if not self.opt.no_instance:
            inst_path = self.inst_paths[index: index + self.clip_length]
            inst = [Image.open(path) for path in inst_path]
            inst_tensor = [transform_A(item) for item in inst]
            inst_tensor = torch.stack(inst_tensor, dim=0)

            if self.opt.load_features:
                feat_path = self.feat_paths[index: index + self.clip_length]
                feat = [Image.open(path).convert('RGB') for path in feat_path]
                norm = normalize()
                feat_tensor = [norm(transform_A(item)) for item in feat]
                feat_tensor = torch.stack(feat_tensor, dim=0)

        input_dict = {'label': A_tensor, 'inst': inst_tensor, 'image': B_tensor, 
                      'feat': feat_tensor, 'path': A_path}

        return input_dict 
開發者ID:Lotayou,項目名稱:everybody_dance_now_pytorch,代碼行數:50,代碼來源:aligned_pair_dataset.py

示例6: __getitem__

# 需要導入模塊: from data import base_dataset [as 別名]
# 或者: from data.base_dataset import normalize [as 別名]
def __getitem__(self, index):        
		### input A (label maps)
		A_path = self.A_paths[index]              
		A_tensor = torch.load(A_path).permute((2,0,1))
		# A = Image.open(A_path)        
		# params = get_params(self.opt, A.size)
		# if self.opt.label_nc == 0:
		#     transform_A = get_transform(self.opt, params)
		#     A_tensor = transform_A(A.convert('RGB'))
		# else:
		#     transform_A = get_transform(self.opt, params, method=Image.NEAREST, normalize=False)
		#     A_tensor = transform_A(A) * 255.0

		B_tensor = inst_tensor = feat_tensor = 0
		### input B (real images)
		if self.opt.isTrain:
			B_path = self.B_paths[index]   
			B = Image.open(B_path).convert('RGB')
			# transform_B = get_transform(self.opt, params)
			# B_tensor = transform_B(B)
			B = np.array(B, dtype = float) / 255.
			B_tensor = torch.tensor(B)[:,:,:3].permute((2,0,1)).float()

			# fig = plt.figure(1)
			# ax = fig.add_subplot(111)
			# ax.imshow(B_tensor[:,:1024,:].permute((1,2,0)))
			# plt.show()

		### if using instance maps        
		if not self.opt.no_instance:
			inst_path = self.inst_paths[index]
			inst = Image.open(inst_path)
			inst_tensor = transform_A(inst)

			if self.opt.load_features:
				feat_path = self.feat_paths[index]            
				feat = Image.open(feat_path).convert('RGB')
				norm = normalize()
				feat_tensor = norm(transform_A(feat))                            

		input_dict = {'label': A_tensor, 'inst': inst_tensor, 'image': B_tensor, 
					  'feat': feat_tensor, 'path': A_path}

		return input_dict 
開發者ID:Kuzphi,項目名稱:EverybodyDanceNow-Temporal-FaceGAN,代碼行數:46,代碼來源:aligned_dataset.py

示例7: __getitem__

# 需要導入模塊: from data import base_dataset [as 別名]
# 或者: from data.base_dataset import normalize [as 別名]
def __getitem__(self, index):        
		### input A (label maps)
		lpath = self.label_paths[index]
		A_tensor_0 = torch.load(lpath).permute((2,0,1)).float()

		idx_ = lpath.split('/')[-1][:12]
		spath = self.opt.input_image_root + '%s_synthesized_image.jpg'%idx_
		A = Image.open(spath).convert('RGB')
		A = np.array(A, dtype = float) / 255.
		A = A[:,:,:3]
		idx = lpath.split('/')[-1].split('.')[0]

		minx, maxx, miny, maxy = list(self.crop_coor[int(idx), :])
		A = A[minx: maxx + 1, miny: maxy + 1, :]
		A  = cv2.resize(A, (128, 128))
		A_tensor_1 = torch.tensor(A).permute((2,0,1)).float()
		A_tensor = torch.cat((A_tensor_0, A_tensor_1), dim = 0)

		B_tensor = inst_tensor = feat_tensor = 0


		lidx = lpath.split('/')[-1][:12]
		sidx = spath.split('/')[-1][:12]
		### input B (real images)
		if self.opt.isTrain:
			B_path = self.rimage_paths[index]   
			B = Image.open(B_path).convert('RGB')
			B = np.array(B, dtype = float) / 255.
			B_tensor = torch.tensor(B)[:,:,:3].permute((2,0,1)).float()

			# fig = plt.figure(1)
			# ax = fig.add_subplot(111)
			# ax.imshow(B_tensor[:,:1024,:].permute((1,2,0)))
			# plt.show()
			ridx = B_path.split('/')[-1][:12]
			assert lidx == ridx , "Wrong match"

		### if using instance maps        
		if not self.opt.no_instance:
			inst_path = self.inst_paths[index]
			inst = Image.open(inst_path)
			inst_tensor = transform_A(inst)

			if self.opt.load_features:
				feat_path = self.feat_paths[index]            
				feat = Image.open(feat_path).convert('RGB')
				norm = normalize()
				feat_tensor = norm(transform_A(feat))                            

		# print(lpath, spath, B_path)
		# print(lidx, sidx )
		assert lidx == sidx , "Wrong match"
		# fig = plt.figure(1)
		# ax = fig.add_subplot(111)
		# ax.imshow(A)
		# plt.show()

		input_dict = {'label': A_tensor, 'inst': inst_tensor, 'image': B_tensor, 
					  'feat': feat_tensor, 'path': lpath}

		return input_dict 
開發者ID:Kuzphi,項目名稱:EverybodyDanceNow-Temporal-FaceGAN,代碼行數:63,代碼來源:aligned_dataset_GAN.py

示例8: work

# 需要導入模塊: from data import base_dataset [as 別名]
# 或者: from data.base_dataset import normalize [as 別名]
def work(self, index):        
		### input A (label maps)
		A_path = self.A_paths[index]              
		A_tensor = torch.load(A_path).permute((2,0,1))
		# A = Image.open(A_path)        
		# params = get_params(self.opt, A.size)
		# if self.opt.label_nc == 0:
		#     transform_A = get_transform(self.opt, params)
		#     A_tensor = transform_A(A.convert('RGB'))
		# else:
		#     transform_A = get_transform(self.opt, params, method=Image.NEAREST, normalize=False)
		#     A_tensor = transform_A(A) * 255.0

		B_tensor = inst_tensor = feat_tensor = 0
		### input B (real images)
		if self.opt.isTrain:
			B_path = self.B_paths[index]   
			B = Image.open(B_path).convert('RGB')
			# transform_B = get_transform(self.opt, params)
			# B_tensor = transform_B(B)
			B = np.array(B, dtype = float) / 255.
			B_tensor = torch.tensor(B)[:,:,:3].permute((2,0,1)).float()

			# fig = plt.figure(1)
			# ax = fig.add_subplot(111)
			# ax.imshow(B_tensor[:,:1024,:].permute((1,2,0)))
			# plt.show()

		### if using instance maps        
		if not self.opt.no_instance:
			inst_path = self.inst_paths[index]
			inst = Image.open(inst_path)
			inst_tensor = transform_A(inst)

			if self.opt.load_features:
				feat_path = self.feat_paths[index]            
				feat = Image.open(feat_path).convert('RGB')
				norm = normalize()
				feat_tensor = norm(transform_A(feat))                            

		input_dict = {'label': A_tensor, 'inst': inst_tensor, 'image': B_tensor, 
					  'feat': feat_tensor, 'path': A_path}

		return input_dict 
開發者ID:Kuzphi,項目名稱:EverybodyDanceNow-Temporal-FaceGAN,代碼行數:46,代碼來源:aligned_dataset_temporal.py


注:本文中的data.base_dataset.normalize方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。