本文整理匯總了Python中data.base_dataset.get_params方法的典型用法代碼示例。如果您正苦於以下問題:Python base_dataset.get_params方法的具體用法?Python base_dataset.get_params怎麽用?Python base_dataset.get_params使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類data.base_dataset
的用法示例。
在下文中一共展示了base_dataset.get_params方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __getitem__
# 需要導入模塊: from data import base_dataset [as 別名]
# 或者: from data.base_dataset import get_params [as 別名]
def __getitem__(self, index):
"""Return a data point and its metadata information.
Parameters:
index - - a random integer for data indexing
Returns a dictionary that contains A, B, A_paths and B_paths
A (tensor) - - an image in the input domain
B (tensor) - - its corresponding image in the target domain
A_paths (str) - - image paths
B_paths (str) - - image paths (same as A_paths)
"""
# read a image given a random integer index
AB_path = self.AB_paths[index]
AB = Image.open(AB_path).convert('RGB')
# split AB image into A and B
w, h = AB.size
w2 = int(w / 2)
if self.opt.add_contrast:
## 增加亮度和對比度
AB = transforms.ColorJitter(contrast=0.1, brightness=0.1)(AB)
A = AB.crop((0, 0, w2, h))
B = AB.crop((w2, 0, w, h))
# apply the same transform to both A and B
transform_params = get_params(self.opt, A.size)
A_transform = get_transform(self.opt, transform_params, grayscale=(self.input_nc == 1))
B_transform = get_transform(self.opt, transform_params, grayscale=(self.output_nc == 1))
A = A_transform(A)
B = B_transform(B)
return {'A': A, 'B': B, 'A_paths': AB_path, 'B_paths': AB_path}
開發者ID:Mingtzge,項目名稱:2019-CCF-BDCI-OCR-MCZJ-OCR-IdentificationIDElement,代碼行數:36,代碼來源:aligned_dataset.py
示例2: __getitem__
# 需要導入模塊: from data import base_dataset [as 別名]
# 或者: from data.base_dataset import get_params [as 別名]
def __getitem__(self, index):
### input A (label maps)
A_path = self.A_paths[index]
A = Image.open(A_path)
params = get_params(self.opt, A.size)
if self.opt.label_nc == 0:
transform_A = get_transform(self.opt, params)
A_tensor = transform_A(A.convert('RGB'))
else:
transform_A = get_transform(self.opt, params, method=Image.NEAREST, normalize=False)
A_tensor = transform_A(A) * 255.0
B_tensor = inst_tensor = feat_tensor = 0
### input B (real images)
if self.opt.isTrain:
B_path = self.B_paths[index]
B = Image.open(B_path).convert('RGB')
transform_B = get_transform(self.opt, params)
B_tensor = transform_B(B)
### if using instance maps
if not self.opt.no_instance:
inst_path = self.inst_paths[index]
inst = Image.open(inst_path)
inst_tensor = transform_A(inst)
if self.opt.load_features:
feat_path = self.feat_paths[index]
feat = Image.open(feat_path).convert('RGB')
norm = normalize()
feat_tensor = norm(transform_A(feat))
input_dict = {'label': A_tensor, 'inst': inst_tensor, 'image': B_tensor,
'feat': feat_tensor, 'path': A_path}
return input_dict
示例3: __getitem__
# 需要導入模塊: from data import base_dataset [as 別名]
# 或者: from data.base_dataset import get_params [as 別名]
def __getitem__(self, index):
### input A (label maps)
A_path = self.A_paths[index]
A = Image.open(A_path)
params = get_params(self.opt, A.size)
if self.opt.label_nc == 0:
transform_A = get_transform(self.opt, params)
A_tensor = transform_A(A.convert('RGB'))
else:
transform_A = get_transform(self.opt, params, method=Image.NEAREST, normalize=False)
A_tensor = transform_A(A) * 255.0
B_tensor = inst_tensor = feat_tensor = 0
### input B (real images)
if self.opt.isTrain or self.opt.use_encoded_image:
B_path = self.B_paths[index]
B = Image.open(B_path).convert('RGB')
transform_B = get_transform(self.opt, params)
B_tensor = transform_B(B)
### if using instance maps
if not self.opt.no_instance:
inst_path = self.inst_paths[index]
inst = Image.open(inst_path)
inst_tensor = transform_A(inst)
if self.opt.load_features:
feat_path = self.feat_paths[index]
feat = Image.open(feat_path).convert('RGB')
norm = normalize()
feat_tensor = norm(transform_A(feat))
input_dict = {'label': A_tensor, 'inst': inst_tensor, 'image': B_tensor,
'feat': feat_tensor, 'path': A_path}
return input_dict
示例4: __getitem__
# 需要導入模塊: from data import base_dataset [as 別名]
# 或者: from data.base_dataset import get_params [as 別名]
def __getitem__(self, index):
### input A (label maps)
if index > self.dataset_size - self.clip_length:
index = 0 # it's a rare chance and won't be effecting training dynamics
A_path = self.A_paths[index: index + self.clip_length]
A = [Image.open(path) for path in A_path]
params = get_params(self.opt, A[0].size)
if self.opt.label_nc == 0:
transform_A = get_transform(self.opt, params)
A_tensor = [transform_A(item.convert('RGB')) for item in A]
A_tensor = torch.stack(A_tensor, dim=0)
else:
transform_A = get_transform(self.opt, params, method=Image.NEAREST, normalize=False)
A_tensor = transform_A(A) * 255.0
B_tensor = inst_tensor = feat_tensor = 0
### input B (real images)
if self.opt.isTrain:
B_path = self.B_paths[index: index + self.clip_length]
B = [Image.open(path).convert('RGB') for path in B_path]
transform_B = get_transform(self.opt, params)
B_tensor = [transform_B(item) for item in B]
B_tensor = torch.stack(B_tensor, dim=0)
else: # only retain first frame for testing
B_path = self.B_paths[index]
B = Image.open(B_path).convert('RGB')
transform_B = get_transform(self.opt, params)
B_tensor = transform_B(B)
### if using instance maps (which is never supposed to)
if not self.opt.no_instance:
inst_path = self.inst_paths[index: index + self.clip_length]
inst = [Image.open(path) for path in inst_path]
inst_tensor = [transform_A(item) for item in inst]
inst_tensor = torch.stack(inst_tensor, dim=0)
if self.opt.load_features:
feat_path = self.feat_paths[index: index + self.clip_length]
feat = [Image.open(path).convert('RGB') for path in feat_path]
norm = normalize()
feat_tensor = [norm(transform_A(item)) for item in feat]
feat_tensor = torch.stack(feat_tensor, dim=0)
input_dict = {'label': A_tensor, 'inst': inst_tensor, 'image': B_tensor,
'feat': feat_tensor, 'path': A_path}
return input_dict
示例5: __getitem__
# 需要導入模塊: from data import base_dataset [as 別名]
# 或者: from data.base_dataset import get_params [as 別名]
def __getitem__(self, index):
### input A (label maps)
A_path = self.A_paths[index]
A_tensor = torch.load(A_path).permute((2,0,1))
# A = Image.open(A_path)
# params = get_params(self.opt, A.size)
# if self.opt.label_nc == 0:
# transform_A = get_transform(self.opt, params)
# A_tensor = transform_A(A.convert('RGB'))
# else:
# transform_A = get_transform(self.opt, params, method=Image.NEAREST, normalize=False)
# A_tensor = transform_A(A) * 255.0
B_tensor = inst_tensor = feat_tensor = 0
### input B (real images)
if self.opt.isTrain:
B_path = self.B_paths[index]
B = Image.open(B_path).convert('RGB')
# transform_B = get_transform(self.opt, params)
# B_tensor = transform_B(B)
B = np.array(B, dtype = float) / 255.
B_tensor = torch.tensor(B)[:,:,:3].permute((2,0,1)).float()
# fig = plt.figure(1)
# ax = fig.add_subplot(111)
# ax.imshow(B_tensor[:,:1024,:].permute((1,2,0)))
# plt.show()
### if using instance maps
if not self.opt.no_instance:
inst_path = self.inst_paths[index]
inst = Image.open(inst_path)
inst_tensor = transform_A(inst)
if self.opt.load_features:
feat_path = self.feat_paths[index]
feat = Image.open(feat_path).convert('RGB')
norm = normalize()
feat_tensor = norm(transform_A(feat))
input_dict = {'label': A_tensor, 'inst': inst_tensor, 'image': B_tensor,
'feat': feat_tensor, 'path': A_path}
return input_dict
示例6: work
# 需要導入模塊: from data import base_dataset [as 別名]
# 或者: from data.base_dataset import get_params [as 別名]
def work(self, index):
### input A (label maps)
A_path = self.A_paths[index]
A_tensor = torch.load(A_path).permute((2,0,1))
# A = Image.open(A_path)
# params = get_params(self.opt, A.size)
# if self.opt.label_nc == 0:
# transform_A = get_transform(self.opt, params)
# A_tensor = transform_A(A.convert('RGB'))
# else:
# transform_A = get_transform(self.opt, params, method=Image.NEAREST, normalize=False)
# A_tensor = transform_A(A) * 255.0
B_tensor = inst_tensor = feat_tensor = 0
### input B (real images)
if self.opt.isTrain:
B_path = self.B_paths[index]
B = Image.open(B_path).convert('RGB')
# transform_B = get_transform(self.opt, params)
# B_tensor = transform_B(B)
B = np.array(B, dtype = float) / 255.
B_tensor = torch.tensor(B)[:,:,:3].permute((2,0,1)).float()
# fig = plt.figure(1)
# ax = fig.add_subplot(111)
# ax.imshow(B_tensor[:,:1024,:].permute((1,2,0)))
# plt.show()
### if using instance maps
if not self.opt.no_instance:
inst_path = self.inst_paths[index]
inst = Image.open(inst_path)
inst_tensor = transform_A(inst)
if self.opt.load_features:
feat_path = self.feat_paths[index]
feat = Image.open(feat_path).convert('RGB')
norm = normalize()
feat_tensor = norm(transform_A(feat))
input_dict = {'label': A_tensor, 'inst': inst_tensor, 'image': B_tensor,
'feat': feat_tensor, 'path': A_path}
return input_dict