本文整理匯總了Python中data.Vocab方法的典型用法代碼示例。如果您正苦於以下問題:Python data.Vocab方法的具體用法?Python data.Vocab怎麽用?Python data.Vocab使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類data
的用法示例。
在下文中一共展示了data.Vocab方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: import data [as 別名]
# 或者: from data import Vocab [as 別名]
def __init__(self):
self.vocab = Vocab(config.vocab_path, config.vocab_size)
self.batcher = Batcher(config.train_data_path, self.vocab, mode='train',
batch_size=config.batch_size, single_pass=False)
time.sleep(5)
if not os.path.exists(config.log_root):
os.mkdir(config.log_root)
self.model_dir = os.path.join(config.log_root, 'train_model')
if not os.path.exists(self.model_dir):
os.mkdir(self.model_dir)
self.eval_log = os.path.join(config.log_root, 'eval_log')
if not os.path.exists(self.eval_log):
os.mkdir(self.eval_log)
self.summary_writer = tf.compat.v1.summary.FileWriter(self.eval_log)
示例2: __init__
# 需要導入模塊: import data [as 別名]
# 或者: from data import Vocab [as 別名]
def __init__(self, model_file_path):
model_name = os.path.basename(model_file_path)
self._decode_dir = os.path.join(config.log_root, 'decode_%s' % (model_name))
self._rouge_ref_dir = os.path.join(self._decode_dir, 'rouge_ref')
self._rouge_dec_dir = os.path.join(self._decode_dir, 'rouge_dec_dir')
for p in [self._decode_dir, self._rouge_ref_dir, self._rouge_dec_dir]:
if not os.path.exists(p):
os.mkdir(p)
self.vocab = Vocab(config.vocab_path, config.vocab_size)
self.batcher = Batcher(config.decode_data_path, self.vocab, mode='decode',
batch_size=config.beam_size, single_pass=True)
time.sleep(5)
self.model = Model(model_file_path, is_eval=True)
示例3: __init__
# 需要導入模塊: import data [as 別名]
# 或者: from data import Vocab [as 別名]
def __init__(self, model_file_path):
self.vocab = Vocab(config.vocab_path, config.vocab_size)
self.batcher = Batcher(config.eval_data_path, self.vocab, mode='eval',
batch_size=config.batch_size, single_pass=True)
self.model_file_path = model_file_path
time.sleep(5)
self.model = Model(model_file_path, is_eval=True)
示例4: init_model
# 需要導入模塊: import data [as 別名]
# 或者: from data import Vocab [as 別名]
def init_model(m_path, device, vocab):
ckpt= torch.load(m_path, map_location='cpu')
lm_args = ckpt['args']
lm_vocab = Vocab(vocab, min_occur_cnt=lm_args.min_occur_cnt, specials=[])
lm_model = BIGLM(device, lm_vocab, lm_args.embed_dim, lm_args.ff_embed_dim, lm_args.num_heads, lm_args.dropout, lm_args.layers, 0.1, lm_args.approx)
lm_model.load_state_dict(ckpt['model'])
lm_model = lm_model.to(device)
lm_model.eval()
return lm_model, lm_vocab, lm_args
示例5: load_dict
# 需要導入模塊: import data [as 別名]
# 或者: from data import Vocab [as 別名]
def load_dict(self):
if self.config.char_rnn:
self.vocab = CharVocab(self.config.vocab_size)
else:
self.vocab = Vocab(self.config.vocab_size)
示例6: main
# 需要導入模塊: import data [as 別名]
# 或者: from data import Vocab [as 別名]
def main(unused_argv):
vocab = data.Vocab(FLAGS.vocab_path, 1000000)
# Check for presence of required special tokens.
assert vocab.CheckVocab(data.PAD_TOKEN) > 0
assert vocab.CheckVocab(data.UNKNOWN_TOKEN) >= 0
assert vocab.CheckVocab(data.SENTENCE_START) > 0
assert vocab.CheckVocab(data.SENTENCE_END) > 0
batch_size = 4
if FLAGS.mode == 'decode':
batch_size = FLAGS.beam_size
hps = seq2seq_attention_model.HParams(
mode=FLAGS.mode, # train, eval, decode
min_lr=0.01, # min learning rate.
lr=0.15, # learning rate
batch_size=batch_size,
enc_layers=4,
enc_timesteps=120,
dec_timesteps=30,
min_input_len=2, # discard articles/summaries < than this
num_hidden=256, # for rnn cell
emb_dim=128, # If 0, don't use embedding
max_grad_norm=2,
num_softmax_samples=4096) # If 0, no sampled softmax.
batcher = batch_reader.Batcher(
FLAGS.data_path, vocab, hps, FLAGS.article_key,
FLAGS.abstract_key, FLAGS.max_article_sentences,
FLAGS.max_abstract_sentences, bucketing=FLAGS.use_bucketing,
truncate_input=FLAGS.truncate_input)
tf.set_random_seed(FLAGS.random_seed)
if hps.mode == 'train':
model = seq2seq_attention_model.Seq2SeqAttentionModel(
hps, vocab, num_gpus=FLAGS.num_gpus)
_Train(model, batcher)
elif hps.mode == 'eval':
model = seq2seq_attention_model.Seq2SeqAttentionModel(
hps, vocab, num_gpus=FLAGS.num_gpus)
_Eval(model, batcher, vocab=vocab)
elif hps.mode == 'decode':
decode_mdl_hps = hps
# Only need to restore the 1st step and reuse it since
# we keep and feed in state for each step's output.
decode_mdl_hps = hps._replace(dec_timesteps=1)
model = seq2seq_attention_model.Seq2SeqAttentionModel(
decode_mdl_hps, vocab, num_gpus=FLAGS.num_gpus)
decoder = seq2seq_attention_decode.BSDecoder(model, batcher, hps, vocab)
decoder.DecodeLoop()
示例7: run
# 需要導入模塊: import data [as 別名]
# 或者: from data import Vocab [as 別名]
def run(args, local_rank):
""" Distributed Synchronous """
torch.manual_seed(1234)
vocab = Vocab(args.vocab, min_occur_cnt=args.min_occur_cnt, specials=[])
if (args.world_size == 1 or dist.get_rank() == 0):
print ("vocab.size = %d"%vocab.size, flush=True)
model = BIGLM(local_rank, vocab, args.embed_dim, args.ff_embed_dim,\
args.num_heads, args.dropout, args.layers, args.smoothing, args.approx)
if args.start_from is not None:
ckpt = torch.load(args.start_from, map_location='cpu')
model.load_state_dict(ckpt['model'])
model = model.cuda(local_rank)
if args.world_size > 1:
torch.manual_seed(1234 + dist.get_rank())
random.seed(5678 + dist.get_rank())
optimizer = Optim(model.embed_dim, args.lr, args.warmup_steps, torch.optim.Adam(model.parameters(), lr=0, betas=(0.9, 0.998), eps=1e-9))
train_data = DataLoader(vocab, args.train_data, args.batch_size, args.max_len_x, args.min_len_x, args.max_len_y, args.min_len_y)
batch_acm = 0
acc_acm, nll_acm, ppl_acm, ntokens_acm, nxs, npairs_acm, loss_acm = 0., 0., 0., 0., 0., 0., 0.
while True:
model.train()
for truth, inp, msk in train_data:
batch_acm += 1
truth = truth.cuda(local_rank)
inp = inp.cuda(local_rank)
msk = msk.cuda(local_rank)
model.zero_grad()
res, loss, acc, nll, ppl, ntokens, npairs = model(truth, inp, msk)
loss_acm += loss.item()
acc_acm += acc
nll_acm += nll
ppl_acm += ppl
ntokens_acm += ntokens
npairs_acm += npairs
nxs += npairs
loss.backward()
if args.world_size > 1:
average_gradients(model)
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
if (args.world_size==1 or dist.get_rank() ==0) and batch_acm%args.print_every == -1%args.print_every:
print ('batch_acm %d, loss %.3f, acc %.3f, nll %.3f, ppl %.3f, x_acm %d, lr %.6f'\
%(batch_acm, loss_acm/args.print_every, acc_acm/ntokens_acm, \
nll_acm/nxs, ppl_acm/nxs, npairs_acm, optimizer._rate), flush=True)
acc_acm, nll_acm, ppl_acm, ntokens_acm, loss_acm, nxs = 0., 0., 0., 0., 0., 0.
if (args.world_size==1 or dist.get_rank() ==0) and batch_acm%args.save_every == -1%args.save_every:
if not os.path.exists(args.save_dir):
os.mkdir(args.save_dir)
torch.save({'args':args, 'model':model.state_dict(), 'optimizer':optimizer.state_dict()}, '%s/epoch%d_batch_%d'%(args.save_dir, train_data.epoch_id, batch_acm))
示例8: run
# 需要導入模塊: import data [as 別名]
# 或者: from data import Vocab [as 別名]
def run(args, local_rank):
""" Distributed Synchronous """
torch.manual_seed(1234)
vocab = Vocab(args.vocab, min_occur_cnt=args.min_occur_cnt, specials=[])
if (args.world_size == 1 or dist.get_rank() == 0):
print ("vocab.size = %d"%vocab.size, flush=True)
model = BIGLM(local_rank, vocab, args.embed_dim, args.ff_embed_dim,\
args.num_heads, args.dropout, args.layers, args.smoothing, args.approx)
if args.start_from is not None:
ckpt = torch.load(args.start_from, map_location='cpu')
model.load_state_dict(ckpt['model'])
model = model.cuda(local_rank)
if args.world_size > 1:
torch.manual_seed(1234 + dist.get_rank())
random.seed(5678 + dist.get_rank())
optimizer = Optim(model.embed_dim, args.lr, args.warmup_steps, torch.optim.Adam(model.parameters(), lr=0, betas=(0.9, 0.998), eps=1e-9))
if args.start_from is not None:
optimizer.load_state_dict(ckpt['optimizer'])
#train_data = DataLoader(vocab, args.train_data+"0"+str(local_rank), args.batch_size, args.max_len, args.min_len)
train_data = DataLoader(vocab, args.train_data, args.batch_size, args.max_len, args.min_len)
batch_acm = 0
acc_acm, nll_acm, ppl_acm, ntokens_acm, nxs, npairs_acm, loss_acm = 0., 0., 0., 0., 0., 0., 0.
while True:
model.train()
for truth, inp, msk in train_data:
batch_acm += 1
truth = truth.cuda(local_rank)
inp = inp.cuda(local_rank)
msk = msk.cuda(local_rank)
model.zero_grad()
res, loss, acc, nll, ppl, ntokens, npairs = model(truth, inp, msk)
loss_acm += loss.item()
acc_acm += acc
nll_acm += nll
ppl_acm += ppl
ntokens_acm += ntokens
npairs_acm += npairs
nxs += npairs
loss.backward()
if args.world_size > 1:
average_gradients(model)
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
if (args.world_size==1 or dist.get_rank() ==0) and batch_acm%args.print_every == -1%args.print_every:
print ('batch_acm %d, loss %.3f, acc %.3f, nll %.3f, ppl %.3f, x_acm %d, lr %.6f'\
%(batch_acm, loss_acm/args.print_every, acc_acm/ntokens_acm, \
nll_acm/nxs, ppl_acm/nxs, npairs_acm, optimizer._rate), flush=True)
acc_acm, nll_acm, ppl_acm, ntokens_acm, loss_acm, nxs = 0., 0., 0., 0., 0., 0.
if (args.world_size==1 or dist.get_rank() ==0) and batch_acm%args.save_every == -1%args.save_every:
if not os.path.exists(args.save_dir):
os.mkdir(args.save_dir)
torch.save({'args':args, 'model':model.state_dict(), 'optimizer':optimizer.state_dict()}, '%s/epoch%d_batch_%d'%(args.save_dir, train_data.epoch_id, batch_acm))
示例9: main
# 需要導入模塊: import data [as 別名]
# 或者: from data import Vocab [as 別名]
def main(unused_argv):
config = importlib.import_module('config.%s' % FLAGS.config)
for argument in FLAGS.override.split(','):
if '=' in argument:
name = argument.split('=')[0]
value = type(getattr(config, name))(argument.split('=')[1])
setattr(config, name, value)
config.input_vocab = data.Vocab(config.input_vocab_file,
config.max_vocab_size) # Max IDs
if config.input_vocab.WordToId(data.PAD_TOKEN) <= 0:
raise ValueError('Invalid PAD_TOKEN id.')
# id of the UNKNOWN_TOKEN should be "0" for copynet model
if config.input_vocab.WordToId(data.UNKNOWN_TOKEN) != 0:
raise ValueError('Invalid UNKOWN_TOKEN id.')
if config.input_vocab.WordToId(data.SENTENCE_START) <= 0:
raise ValueError('Invalid SENTENCE_START id.')
if config.input_vocab.WordToId(data.SENTENCE_END) <= 0:
raise ValueError('Invalid SENTENCE_END id.')
if config.output_vocab_file:
config.output_vocab = data.Vocab(config.output_vocab_file,
config.max_vocab_size) # Max IDs
if config.output_vocab.WordToId(data.PAD_TOKEN) <= 0:
raise ValueError('Invalid PAD_TOKEN id.')
# id of the UNKNOWN_TOKEN should be "0" for copynet model
if config.output_vocab.WordToId(data.UNKNOWN_TOKEN) != 0:
raise ValueError('Invalid UNKOWN_TOKEN id.')
if config.output_vocab.WordToId(data.SENTENCE_START) <= 0:
raise ValueError('Invalid SENTENCE_START id.')
if config.output_vocab.WordToId(data.SENTENCE_END) <= 0:
raise ValueError('Invalid SENTENCE_END id.')
else:
config.output_vocab = config.input_vocab
train_batcher = config.Batcher(config.train_set, config)
valid_batcher = config.Batcher(config.valid_set, config)
tf.set_random_seed(config.random_seed)
if FLAGS.mode == 'train':
model = config.Model(config, 'train', num_gpus=FLAGS.num_gpus)
_Train(model, config, train_batcher)
elif FLAGS.mode == 'eval':
config.dropout_rnn = 1.0
config.dropout_emb = 1.0
model = config.Model(config, 'eval', num_gpus=FLAGS.num_gpus)
_Eval(model, config, valid_batcher)
elif FLAGS.mode == 'decode':
config.dropout_rnn = 1.0
config.dropout_emb = 1.0
config.batch_size = config.beam_size
model = config.Model(config, 'decode', num_gpus=FLAGS.num_gpus)
decoder = decode.BeamSearch(model, valid_batcher, config)
decoder.DecodeLoop()
示例10: main
# 需要導入模塊: import data [as 別名]
# 或者: from data import Vocab [as 別名]
def main(unused_argv):
vocab = data.Vocab(FLAGS.vocab_path, 1000000)
# Check for presence of required special tokens.
assert vocab.WordToId(data.PAD_TOKEN) > 0
assert vocab.WordToId(data.UNKNOWN_TOKEN) >= 0
assert vocab.WordToId(data.SENTENCE_START) > 0
assert vocab.WordToId(data.SENTENCE_END) > 0
batch_size = 4
if FLAGS.mode == 'decode':
batch_size = FLAGS.beam_size
hps = seq2seq_attention_model.HParams(
mode=FLAGS.mode, # train, eval, decode
min_lr=0.01, # min learning rate.
lr=0.15, # learning rate
batch_size=batch_size,
enc_layers=4,
enc_timesteps=120,
dec_timesteps=30,
min_input_len=2, # discard articles/summaries < than this
num_hidden=256, # for rnn cell
emb_dim=128, # If 0, don't use embedding
max_grad_norm=2,
num_softmax_samples=4096) # If 0, no sampled softmax.
batcher = batch_reader.Batcher(
FLAGS.data_path, vocab, hps, FLAGS.article_key,
FLAGS.abstract_key, FLAGS.max_article_sentences,
FLAGS.max_abstract_sentences, bucketing=FLAGS.use_bucketing,
truncate_input=FLAGS.truncate_input)
tf.set_random_seed(FLAGS.random_seed)
if hps.mode == 'train':
model = seq2seq_attention_model.Seq2SeqAttentionModel(
hps, vocab, num_gpus=FLAGS.num_gpus)
_Train(model, batcher)
elif hps.mode == 'eval':
model = seq2seq_attention_model.Seq2SeqAttentionModel(
hps, vocab, num_gpus=FLAGS.num_gpus)
_Eval(model, batcher, vocab=vocab)
elif hps.mode == 'decode':
decode_mdl_hps = hps
# Only need to restore the 1st step and reuse it since
# we keep and feed in state for each step's output.
decode_mdl_hps = hps._replace(dec_timesteps=1)
model = seq2seq_attention_model.Seq2SeqAttentionModel(
decode_mdl_hps, vocab, num_gpus=FLAGS.num_gpus)
decoder = seq2seq_attention_decode.BSDecoder(model, batcher, hps, vocab)
decoder.DecodeLoop()
示例11: main
# 需要導入模塊: import data [as 別名]
# 或者: from data import Vocab [as 別名]
def main(unused_argv):
if len(unused_argv) != 1: # prints a message if you've entered flags incorrectly
raise Exception("Problem with flags: %s" % unused_argv)
tf.logging.set_verbosity(tf.logging.INFO) # choose what level of logging you want
tf.logging.info('Starting seq2seq_attention in %s mode...', (FLAGS.mode))
# Change log_root to FLAGS.log_root/FLAGS.exp_name and create the dir if necessary
FLAGS.log_root = os.path.join(FLAGS.log_root, FLAGS.exp_name)
if not os.path.exists(FLAGS.log_root):
if FLAGS.mode=="train":
os.makedirs(FLAGS.log_root)
else:
raise Exception("Logdir %s doesn't exist. Run in train mode to create it." % (FLAGS.log_root))
vocab = Vocab(FLAGS.vocab_path, FLAGS.vocab_size) # create a vocabulary
# If in decode mode, set batch_size = beam_size
# Reason: in decode mode, we decode one example at a time.
# On each step, we have beam_size-many hypotheses in the beam, so we need to make a batch of these hypotheses.
if FLAGS.mode == 'decode':
FLAGS.batch_size = FLAGS.beam_size
# If single_pass=True, check we're in decode mode
if FLAGS.single_pass and FLAGS.mode!='decode':
raise Exception("The single_pass flag should only be True in decode mode")
# Make a namedtuple hps, containing the values of the hyperparameters that the model needs
hparam_list = ['mode', 'lr', 'adagrad_init_acc', 'rand_unif_init_mag', 'trunc_norm_init_std', 'max_grad_norm', 'hidden_dim', 'emb_dim', 'batch_size', 'max_dec_steps', 'max_enc_steps', 'coverage', 'cov_loss_wt', 'pointer_gen']
hps_dict = {}
for key,val in FLAGS.__flags.iteritems(): # for each flag
if key in hparam_list: # if it's in the list
hps_dict[key] = val # add it to the dict
hps = namedtuple("HParams", hps_dict.keys())(**hps_dict)
# Create a batcher object that will create minibatches of data
batcher = Batcher(FLAGS.data_path, vocab, hps, single_pass=FLAGS.single_pass)
tf.set_random_seed(111) # a seed value for randomness
if hps.mode == 'train':
print "creating model..."
model = SummarizationModel(hps, vocab)
setup_training(model, batcher)
elif hps.mode == 'eval':
model = SummarizationModel(hps, vocab)
run_eval(model, batcher, vocab)
elif hps.mode == 'decode':
decode_model_hps = hps # This will be the hyperparameters for the decoder model
decode_model_hps = hps._replace(max_dec_steps=1) # The model is configured with max_dec_steps=1 because we only ever run one step of the decoder at a time (to do beam search). Note that the batcher is initialized with max_dec_steps equal to e.g. 100 because the batches need to contain the full summaries
model = SummarizationModel(decode_model_hps, vocab)
decoder = BeamSearchDecoder(model, batcher, vocab)
decoder.decode() # decode indefinitely (unless single_pass=True, in which case deocde the dataset exactly once)
else:
raise ValueError("The 'mode' flag must be one of train/eval/decode")