本文整理匯總了Python中data.Data方法的典型用法代碼示例。如果您正苦於以下問題:Python data.Data方法的具體用法?Python data.Data怎麽用?Python data.Data使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類data
的用法示例。
在下文中一共展示了data.Data方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: import data [as 別名]
# 或者: from data import Data [as 別名]
def __init__(self):
super(Predictor, self).__init__()
num_units = 512
num_layer = 2
batch_size = 1
data_dir = 'data/'
input_file = 'poetry.txt'
vocab_file = 'vocab.pkl'
tensor_file = 'tensor.npy'
self.data = Data(data_dir, input_file, vocab_file, tensor_file,
is_train=False, batch_size=batch_size)
self.model = Net(self.data, num_units, num_layer, batch_size)
self.sess = tf.Session()
saver = tf.train.Saver(tf.global_variables())
saver.restore(self.sess, 'model/model')
print('Load model done.' + '\n')
示例2: main
# 需要導入模塊: import data [as 別名]
# 或者: from data import Data [as 別名]
def main():
global model
if args.data_test == ['video']:
from videotester import VideoTester
model = model.Model(args, checkpoint)
t = VideoTester(args, model, checkpoint)
t.test()
else:
if checkpoint.ok:
loader = data.Data(args)
_model = model.Model(args, checkpoint)
_loss = loss.Loss(args, checkpoint) if not args.test_only else None
t = Trainer(args, loader, _model, _loss, checkpoint)
while not t.terminate():
t.train()
t.test()
checkpoint.done()
示例3: test
# 需要導入模塊: import data [as 別名]
# 或者: from data import Data [as 別名]
def test():
from data import Data
from config import Config
conf = Config()
usecuda = True
we = torch.load('./data/processed/ji/we.pkl')
char_table = None
sub_table = None
if conf.need_char or conf.need_elmo:
char_table = torch.load('./data/processed/ji/char_table.pkl')
if conf.need_sub:
sub_table = torch.load('./data/processed/ji/sub_table.pkl')
model = IDRCModel(conf, we, char_table, sub_table, usecuda)
if usecuda:
model.cuda()
d = Data(usecuda, conf)
for a1, a2, sense, conn in d.train_loader:
if usecuda:
a1, a2 = a1.cuda(), a2.cuda()
a1, a2 = Variable(a1), Variable(a2)
break
model.eval()
out = model(a1, a2)
print(out)
示例4: createdata
# 需要導入模塊: import data [as 別名]
# 或者: from data import Data [as 別名]
def createdata(path):
""" Create training data by calling the Data class
:type path: string
:param path: path to the training document folder
"""
data = Data()
data.builddata(path)
# Change the threshold if you want to filter
# out the low-frequency features
data.buildvocab(thresh=1)
data.buildmatrix()
data.savematrix("training-data.pickle.gz")
data.savevocab("vocab.pickle.gz")
示例5: main
# 需要導入模塊: import data [as 別名]
# 或者: from data import Data [as 別名]
def main():
data = Data(dataname='kosarak', limit=20000)
finder = SVSM(data, top_k=32, epsilon=4)
cand_dict = finder.find()
print(cand_dict)
示例6: main
# 需要導入模塊: import data [as 別名]
# 或者: from data import Data [as 別名]
def main():
data = Data()
finder = PEM(data, top_k=32, epsilon=4)
cand_dict = finder.find()
print(cand_dict)
示例7: _pre_data
# 需要導入模塊: import data [as 別名]
# 或者: from data import Data [as 別名]
def _pre_data(self):
print('pre data...')
self.data = Data(self.cuda, self.conf)
示例8: update_pickle_file
# 需要導入模塊: import data [as 別名]
# 或者: from data import Data [as 別名]
def update_pickle_file(file_name, eps=0, k=0, v=0):
d_old = data_old.Data(file_name)
d_old.load()
print(file_name, 'loaded')
# d_old.print_fields()
d_new = data.Data()
d_new.set_agent('Wolp',
int(d_old.get_data('max_actions')[0]),
k,
v)
d_new.set_experiment(d_old.get_data('experiment')[0],
[-3],
[3],
eps)
space = action_space.Space([-3], [3], int(d_old.get_data('max_actions')[0]))
# print(space.get_space())
# d_new.print_data()
done = d_old.get_data('done')
actors_result = d_old.get_data('actors_result')
actions = d_old.get_data('actions')
state_0 = d_old.get_data('state_0').tolist()
state_1 = d_old.get_data('state_1').tolist()
state_2 = d_old.get_data('state_2').tolist()
state_3 = d_old.get_data('state_3').tolist()
rewards = d_old.get_data('rewards').tolist()
ep = 0
temp = 0
l = len(done)
for i in range(l):
d_new.set_action(space.import_point(actions[i]).tolist())
d_new.set_actors_action(space.import_point(actors_result[i]).tolist())
d_new.set_ndn_action(space.import_point(
space.search_point(actors_result[i], 1)[0]).tolist())
state = [state_0[i], state_1[i], state_2[i], state_3[i]]
d_new.set_state(state)
d_new.set_reward(1)
if done[i] > 0:
# print(ep, i - temp, 'progress', i / l)
temp = i
ep += 1
# if ep % 200 == 199:
# d_new.finish_and_store_episode()
# else:
d_new.end_of_episode()
d_new.save()
開發者ID:jimkon,項目名稱:Deep-Reinforcement-Learning-in-Large-Discrete-Action-Spaces,代碼行數:52,代碼來源:data_update.py
示例9: run
# 需要導入模塊: import data [as 別名]
# 或者: from data import Data [as 別名]
def run(args):
save_dir = '{}/'.format(args.experiment_name)
if not os.path.exists(save_dir):
os.mkdir(save_dir)
query = args.query
k = args.k
trained_prefix = args.trained_filename
untrained_prefix = args.untrained_filename
threshold = args.threshold
search_space = Data('darts')
# if it's the first iteration, choose k arches at random to train
if query == 0:
print('about to generate {} random'.format(k))
data = search_space.generate_random_dataset(num=k, train=False)
arches = [d['spec'] for d in data]
next_arches = []
for arch in arches:
d = {}
d['spec'] = arch
next_arches.append(d)
else:
# get the data from prior iterations from pickle files
data = []
for i in range(query):
filepath = '{}{}_{}.pkl'.format(save_dir, trained_prefix, i)
with open(filepath, 'rb') as f:
arch = pickle.load(f)
data.append(arch)
print('Iteration {}'.format(query))
print('Data from last round')
print(data)
# run the meta neural net to output the next arches
next_arches = run_meta_neuralnet(search_space, data, k=k)
print('next batch')
print(next_arches)
# output the new arches to pickle files
for i in range(k):
index = query + i
filepath = '{}{}_{}.pkl'.format(save_dir, untrained_prefix, index)
next_arches[i]['index'] = index
next_arches[i]['filepath'] = filepath
with open(filepath, 'wb') as f:
pickle.dump(next_arches[i], f)
示例10: run_experiments
# 需要導入模塊: import data [as 別名]
# 或者: from data import Data [as 別名]
def run_experiments(args, save_dir):
os.environ['search_space'] = args.search_space
from nas_algorithms import run_nas_algorithm
from data import Data
trials = args.trials
out_file = args.output_filename
save_specs = args.save_specs
metann_params = meta_neuralnet_params(args.search_space)
algorithm_params = algo_params(args.algo_params)
num_algos = len(algorithm_params)
logging.info(algorithm_params)
# set up search space
mp = copy.deepcopy(metann_params)
ss = mp.pop('search_space')
dataset = mp.pop('dataset')
search_space = Data(ss, dataset=dataset)
for i in range(trials):
results = []
walltimes = []
run_data = []
for j in range(num_algos):
# run NAS algorithm
print('\n* Running algorithm: {}'.format(algorithm_params[j]))
starttime = time.time()
algo_result, run_datum = run_nas_algorithm(algorithm_params[j], search_space, mp)
algo_result = np.round(algo_result, 5)
# remove unnecessary dict entries that take up space
for d in run_datum:
if not save_specs:
d.pop('spec')
for key in ['encoding', 'adjacency', 'path', 'dist_to_min']:
if key in d:
d.pop(key)
# add walltime, results, run_data
walltimes.append(time.time()-starttime)
results.append(algo_result)
run_data.append(run_datum)
# print and pickle results
filename = os.path.join(save_dir, '{}_{}.pkl'.format(out_file, i))
print('\n* Trial summary: (params, results, walltimes)')
print(algorithm_params)
print(metann_params)
print(results)
print(walltimes)
print('\n* Saving to file {}'.format(filename))
with open(filename, 'wb') as f:
pickle.dump([algorithm_params, metann_params, results, walltimes, run_data], f)
f.close()
示例11: build_pdf
# 需要導入模塊: import data [as 別名]
# 或者: from data import Data [as 別名]
def build_pdf(self, source, texinputs=[]):
with TempDir() as tmpdir,\
source.temp_saved(suffix='.latex', dir=tmpdir) as tmp:
# close temp file, so other processes can access it also on Windows
tmp.close()
base_fn = os.path.splitext(tmp.name)[0]
output_fn = base_fn + '.pdf'
latex_cmd = [shlex_quote(self.pdflatex),
'-interaction=batchmode',
'-halt-on-error',
'-no-shell-escape',
'-file-line-error',
'%O',
'%S', ]
if self.variant == 'pdflatex':
args = [self.latexmk,
'-pdf',
'-pdflatex={}'.format(' '.join(latex_cmd)),
tmp.name, ]
elif self.variant == 'xelatex':
args = [self.latexmk,
'-xelatex',
tmp.name, ]
else:
raise ValueError('Invalid LaTeX variant: {}'.format(
self.variant))
# create environment
newenv = os.environ.copy()
newenv['TEXINPUTS'] = os.pathsep.join(texinputs) + os.pathsep
try:
subprocess.check_call(args,
cwd=tmpdir,
env=newenv,
stdin=open(os.devnull, 'r'),
stdout=open(os.devnull, 'w'),
stderr=open(os.devnull, 'w'), )
except CalledProcessError as e:
raise_from(LatexBuildError(base_fn + '.log'), e)
return I(open(output_fn, 'rb').read(), encoding=None)