當前位置: 首頁>>代碼示例>>Python>>正文


Python diagnostics.ProgressBar方法代碼示例

本文整理匯總了Python中dask.diagnostics.ProgressBar方法的典型用法代碼示例。如果您正苦於以下問題:Python diagnostics.ProgressBar方法的具體用法?Python diagnostics.ProgressBar怎麽用?Python diagnostics.ProgressBar使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在dask.diagnostics的用法示例。


在下文中一共展示了diagnostics.ProgressBar方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: calculate_centroids_old

# 需要導入模塊: from dask import diagnostics [as 別名]
# 或者: from dask.diagnostics import ProgressBar [as 別名]
def calculate_centroids_old(cnmds, window, grp_dim=['animal', 'session']):
    print("computing centroids")
    cnt_list = []
    for anm, cur_anm in cnmds.groupby('animal'):
        for ss, cur_ss in cur_anm.groupby('session'):
            # cnt = centroids(cur_ss['A_shifted'], window.sel(animal=anm))
            cnt = da.delayed(centroids)(
                cur_ss['A_shifted'], window.sel(animal=anm))
            cnt_list.append(cnt)
    with ProgressBar():
        cnt_list, = da.compute(cnt_list)
    cnts_ds = pd.concat(cnt_list, ignore_index=True)
    cnts_ds.height = cnts_ds.height.astype(float)
    cnts_ds.width = cnts_ds.width.astype(float)
    cnts_ds.unit_id = cnts_ds.unit_id.astype(int)
    cnts_ds.animal = cnts_ds.animal.astype(str)
    cnts_ds.session = cnts_ds.session.astype(str)
    cnts_ds.session_id = cnts_ds.session_id.astype(str)
    return cnts_ds 
開發者ID:DeniseCaiLab,項目名稱:minian,代碼行數:21,代碼來源:cross_registration.py

示例2: centroids_distance_old

# 需要導入模塊: from dask import diagnostics [as 別名]
# 或者: from dask.diagnostics import ProgressBar [as 別名]
def centroids_distance_old(cents,
                       A,
                       window,
                       shift,
                       hamming,
                       corr,
                       tile=(50, 50)):
    sessions = cents['session'].unique()
    dim_h = (np.min(cents['height']), np.max(cents['height']))
    dim_w = (np.min(cents['width']), np.max(cents['width']))
    dist_list = []
    for ssA, ssB in itt.combinations(sessions, 2):
        # dist = _calc_cent_dist(ssA, ssB, cents, cnmds, window, tile, dim_h, dim_w)
        dist = da.delayed(_calc_cent_dist)(ssA, ssB, cents, A, window,
                                           tile, dim_h, dim_w, shift, hamming,
                                           corr)
        dist_list.append(dist)
    with ProgressBar():
        dist_list, = da.compute(dist_list)
    dists = pd.concat(dist_list, ignore_index=True)
    return dists 
開發者ID:DeniseCaiLab,項目名稱:minian,代碼行數:23,代碼來源:cross_registration.py

示例3: scale_varr

# 需要導入模塊: from dask import diagnostics [as 別名]
# 或者: from dask.diagnostics import ProgressBar [as 別名]
def scale_varr(varr, scale=(0, 1), inplace=False, pre_compute=False):
    varr_max = varr.max()
    varr_min = varr.min()
    if pre_compute:
        print("pre-computing min and max")
        with ProgressBar():
            varr_max = varr_max.compute()
            varr_min = varr_min.compute()
    if inplace:
        varr_norm = varr
        varr_norm -= varr_min
        varr_norm *= 1 / (varr_max - varr_min)
        varr_norm *= (scale[1] - scale[0])
        varr_norm += scale[0]
    else:
        varr_norm = ((varr - varr_min) * (scale[1] - scale[0])
                     / (varr_max - varr_min)) + scale[0]
    return varr_norm 
開發者ID:DeniseCaiLab,項目名稱:minian,代碼行數:20,代碼來源:utilities.py

示例4: starfm

# 需要導入模塊: from dask import diagnostics [as 別名]
# 或者: from dask.diagnostics import ProgressBar [as 別名]
def starfm(fine_image_t0, coarse_image_t0, coarse_image_t1, profile, shape):
    print ('Processing...')
    prediction_da = predict(fine_image_t0, coarse_image_t0, coarse_image_t1, shape)
    with ProgressBar():
         prediction = prediction_da.compute()
    
    return prediction 
開發者ID:nmileva,項目名稱:starfm4py,代碼行數:9,代碼來源:starfm4py.py

示例5: main

# 需要導入模塊: from dask import diagnostics [as 別名]
# 或者: from dask.diagnostics import ProgressBar [as 別名]
def main(input_file, dtypes, output_path):
    """Create Plots From data in input"""

    data = pd.read_csv(input_file)
    new_file_name = f"{input_file}.parq"
    data.to_parquet(new_file_name)

    data_types = json.load(open(dtypes, "r"))
    plots = create_plots(new_file_name, data_types, output_path)
    with ProgressBar():
        dask.compute(*plots, scheduler="processes", n_workers=22) 
開發者ID:eyadsibai,項目名稱:brute-force-plotter,代碼行數:13,代碼來源:brute_force_plotter.py

示例6: detect_brightspot_perframe

# 需要導入模塊: from dask import diagnostics [as 別名]
# 或者: from dask.diagnostics import ProgressBar [as 別名]
def detect_brightspot_perframe(varray, thres=0.95):
    print("creating parallel schedule")
    spots = []
    for fid, fm in varray.rolling(frame=1):
        sp = delayed(lambda f: f > f.quantile(thres, interpolation='lower'))(
            fm)
        spots.append(sp)
    with ProgressBar():
        print("detecting bright spots by frame")
        spots, = compute(spots)
    print("concatenating results")
    spots = xr.concat(spots, dim='frame')
    return spots


# def correct_dust(varray, dust):
#     mov_corr = varray.values
#     nz = np.nonzero(dust)
#     nz_tp = [(d0, d1) for d0, d1 in zip(nz[0], nz[1])]
#     for i in range(np.count_nonzero(dust)):
#         cur_dust = (nz[0][i], nz[1][i])
#         cur_sur = set(
#             itt.product(
#                 range(cur_dust[0] - 1, cur_dust[0] + 2),
#                 range(cur_dust[1] - 1, cur_dust[1] + 2))) - set(
#                     cur_dust) - set(nz_tp)
#         cur_sur = list(
#             filter(
#                 lambda d: 0 < d[0] < mov.shape[1] and 0 < d[1] < mov.shape[2],
#                 cur_sur))
#         if len(cur_sur) > 0:
#             sur_arr = np.empty((mov.shape[0], len(cur_sur)))
#             for si, sur in enumerate(cur_sur):
#                 sur_arr[:, si] = mov[:, sur[0], sur[1]]
#             mov_corr[:, cur_dust[0], cur_dust[1]] = np.mean(sur_arr, axis=1)
#         else:
#             print("unable to correct for point ({}, {})".format(
#                 cur_dust[0], cur_dust[1]))
#     return mov_corr 
開發者ID:DeniseCaiLab,項目名稱:minian,代碼行數:41,代碼來源:preprocessing.py

示例7: remove_background_old

# 需要導入模塊: from dask import diagnostics [as 別名]
# 或者: from dask.diagnostics import ProgressBar [as 別名]
def remove_background_old(varray, window=51):
    print("creating parallel schedule")
    varr_ft = varray.astype(np.float32)
    compute_list = []
    for fid in varr_ft.coords['frame'].values:
        fm = varr_ft.loc[dict(frame=fid)]
        _ = delayed(remove_background_perframe_old)(fid, fm, varr_ft, window)
        compute_list.append(_)
    with ProgressBar():
        print("removing background")
        compute(compute_list)
    print("normalizing result")
    varr_ft = scale_varr(varr_ft, (0, 255)).astype(varray.dtype, copy=False)
    print("background removal done")
    return varr_ft.rename(varray.name + "_Filtered") 
開發者ID:DeniseCaiLab,項目名稱:minian,代碼行數:17,代碼來源:preprocessing.py

示例8: prune_targets_command

# 需要導入模塊: from dask import diagnostics [as 別名]
# 或者: from dask.diagnostics import ProgressBar [as 別名]
def prune_targets_command(args):
    """
    Prune targets/find enriched features.
    """
    # Loading from YAML is extremely slow. Therefore this is a potential performance improvement.
    # Potential improvements are switching to JSON or to use a CLoader:
    # https://stackoverflow.com/questions/27743711/can-i-speedup-yaml
    # The alternative for which was opted in the end is binary pickling.
    extension = PurePath(args.module_fname.name).suffixes
    if is_valid_suffix(extension, 'ctx'):
        if args.expression_mtx_fname is None:
            LOGGER.error("No expression matrix is supplied.")
            sys.exit(0)
        LOGGER.info("Creating modules.")
        modules = adjacencies2modules(args)
    else:
        LOGGER.info("Loading modules.")
        try:
            modules = load_modules(args.module_fname.name)
        except ValueError as e:
            LOGGER.error(e)
            sys.exit(1)

    if len(modules) == 0:
        LOGGER.error("Not a single module loaded")
        sys.exit(1)

    LOGGER.info("Loading databases.")
    dbs = _load_dbs(args.database_fname)

    LOGGER.info("Calculating regulons.")
    motif_annotations_fname = args.annotations_fname.name
    calc_func = find_features if args.no_pruning == "yes" else prune2df
    with ProgressBar() if args.mode == "dask_multiprocessing" else NoProgressBar():
        df_motifs = calc_func(dbs, modules, motif_annotations_fname,
                           rank_threshold=args.rank_threshold,
                           auc_threshold=args.auc_threshold,
                           nes_threshold=args.nes_threshold,
                           client_or_address=args.mode,
                           module_chunksize=args.chunk_size,
                           num_workers=args.num_workers)

    LOGGER.info("Writing results to file.")
    if args.output.name == '<stdout>':
        df_motifs.to_csv(args.output)
    else:
        save_enriched_motifs(df_motifs, args.output.name) 
開發者ID:aertslab,項目名稱:pySCENIC,代碼行數:49,代碼來源:pyscenic.py

示例9: run

# 需要導入模塊: from dask import diagnostics [as 別名]
# 或者: from dask.diagnostics import ProgressBar [as 別名]
def run(args):
    # Set logging level.
    logging_debug_opt = False
    LOGGER.addHandler(create_logging_handler(logging_debug_opt))
    LOGGER.setLevel(logging.DEBUG)

    LOGGER.info("Using configuration {}.".format(args.config_filename))
    cfg = ConfigParser()
    cfg.read(args.config_filename)

    in_fname = cfg['data']['modules'] if not args.input else args.input
    LOGGER.info("Loading modules from {}.".format(in_fname))
    # Loading from YAML is extremely slow. Therefore this is a potential performance improvement.
    # Potential improvements are switching to JSON or to use a CLoader:
    # https://stackoverflow.com/questions/27743711/can-i-speedup-yaml
    if in_fname.endswith('.yaml'):
        modules = load_from_yaml(in_fname)
    else:
        with open(in_fname, 'rb') as f:
            modules = pickle.load(f)
    # Filter out modules with to few genes.
    min_genes = int(cfg['parameters']['min_genes'])
    modules = list(filter(lambda m: len(m) >= min_genes, modules))

    LOGGER.info("Loading databases.")
    def name(fname):
        return os.path.splitext(os.path.basename(fname))[0]
    db_fnames = list(mapcat(glob.glob, cfg['data']['databases'].split(";")))
    dbs = [RankingDatabase(fname=fname, name=name(fname)) for fname in db_fnames]

    LOGGER.info("Calculating regulons.")
    motif_annotations_fname = cfg['data']['motif_annotations']
    mode= cfg['parameters']['mode']
    with ProgressBar() if mode == "dask_multiprocessing" else NoProgressBar():
        df = prune2df(dbs, modules, motif_annotations_fname,
                                  rank_threshold=int(cfg['parameters']['rank_threshold']),
                                  auc_threshold=float(cfg['parameters']['auc_threshold']),
                                  nes_threshold=float(cfg['parameters']['nes_threshold']),
                                  client_or_address=mode,
                                  module_chunksize=cfg['parameters']['chunk_size'],
                                  num_workers=args.num_workers)

    LOGGER.info("Writing results to file.")
    df.to_csv(cfg['parameters']['output'] if not args.output else args.output) 
開發者ID:aertslab,項目名稱:pySCENIC,代碼行數:46,代碼來源:hpc-prune.py

示例10: template_match_with_binary_image

# 需要導入模塊: from dask import diagnostics [as 別名]
# 或者: from dask.diagnostics import ProgressBar [as 別名]
def template_match_with_binary_image(
        self, binary_image, lazy_result=True, show_progressbar=True
    ):
        """Template match the signal dimensions with a binary image.

        Used to find diffraction disks in convergent beam electron
        diffraction data.

        Might also work with non-binary images, but this haven't been
        extensively tested.

        Parameters
        ----------
        binary_image : 2-D NumPy array
        lazy_result : bool, default True
            If True, will return a LazyDiffraction2D object. If False,
            will compute the result and return a Diffraction2D object.
        show_progressbar : bool, default True

        Returns
        -------
        template_match : Diffraction2D object

        Examples
        --------
        >>> s = ps.dummy_data.get_cbed_signal()
        >>> binary_image = np.random.randint(0, 2, (6, 6))
        >>> s_template = s.template_match_with_binary_image(
        ...     binary_image, show_progressbar=False)
        >>> s.plot()

        See also
        --------
        template_match_disk
        template_match_ring

        """
        if self._lazy:
            dask_array = self.data
        else:
            sig_chunks = list(self.axes_manager.signal_shape)[::-1]
            chunks = [8] * len(self.axes_manager.navigation_shape)
            chunks.extend(sig_chunks)
            dask_array = da.from_array(self.data, chunks=chunks)
        output_array = dt._template_match_with_binary_image(dask_array, binary_image)
        if not lazy_result:
            if show_progressbar:
                pbar = ProgressBar()
                pbar.register()
            output_array = output_array.compute()
            if show_progressbar:
                pbar.unregister()
            s = Diffraction2D(output_array)
        else:
            s = LazyDiffraction2D(output_array)
        pst._copy_signal_all_axes_metadata(self, s)
        return s 
開發者ID:pyxem,項目名稱:pyxem,代碼行數:59,代碼來源:diffraction2d.py

示例11: intensity_peaks

# 需要導入模塊: from dask import diagnostics [as 別名]
# 或者: from dask.diagnostics import ProgressBar [as 別名]
def intensity_peaks(
        self, peak_array, disk_r=4, lazy_result=True, show_progressbar=True
    ):
        """Get intensity of a peak in the diffraction data.

        The intensity is calculated by taking the mean of the
        pixel values inside radius disk_r from the peak
        position.

        Parameters
        ----------
        peak_array : Numpy or Dask array
            Must have the same navigation shape as this signal.
        disk_r : int
            Radius of the disc chosen to take the mean value of
        lazy_result : bool, default True
            If True, will return a LazyDiffraction2D object. If False,
            will compute the result and return a Diffraction2D object.
        show_progressbar : bool, default True

        Returns
        -------
        intensity_array: Numpy or Dask array
            Same navigation shape as this signal, with peak position in
            x and y coordinates and the mean intensity.

        Examples
        --------
        >>> s = ps.dummy_data.get_cbed_signal()
        >>> peak_array = s.find_peaks_lazy()
        >>> intensity_array = s.intensity_peaks(peak_array, disk_r=6)
        >>> intensity_array_computed = intensity_array.compute()

        """
        if self._lazy:
            dask_array = self.data
        else:
            sig_chunks = list(self.axes_manager.signal_shape)[::-1]
            chunks = [8] * len(self.axes_manager.navigation_shape)
            chunks.extend(sig_chunks)
            dask_array = da.from_array(self.data, chunks=chunks)

        chunks_peak = dask_array.chunks[:-2]
        if hasattr(peak_array, "chunks"):
            peak_array_dask = da.rechunk(peak_array, chunks=chunks_peak)
        else:
            peak_array_dask = da.from_array(peak_array, chunks=chunks_peak)

        output_array = dt._intensity_peaks_image(dask_array, peak_array_dask, disk_r)

        if not lazy_result:
            if show_progressbar:
                pbar = ProgressBar()
                pbar.register()
            output_array = output_array.compute()
            if show_progressbar:
                pbar.unregister()
        return output_array 
開發者ID:pyxem,項目名稱:pyxem,代碼行數:60,代碼來源:diffraction2d.py

示例12: estimate_shifts

# 需要導入模塊: from dask import diagnostics [as 別名]
# 或者: from dask.diagnostics import ProgressBar [as 別名]
def estimate_shifts(minian_df, by='session', to='first', temp_var='org', template=None, rm_background=False):
    if template is not None:
        minian_df['template'] = template

    def get_temp(row):
        ds, temp = row['minian'], row['template']
        try:
            return ds.isel(frame=temp).drop('frame')
        except TypeError:
            func_dict = {
                'mean': lambda v: v.mean('frame'),
                'max': lambda v: v.max('frame')}
            try:
                return func_dict[temp](ds)
            except KeyError:
                raise NotImplementedError(
                    "template {} not understood".format(temp))

    minian_df['template'] = minian_df.apply(get_temp, axis='columns')
    grp_dims = list(minian_df.index.names)
    grp_dims.remove(by)
    temp_dict, shift_dict, corr_dict, tempsh_dict = [dict() for _ in range(4)]
    for idxs, df in minian_df.groupby(level=grp_dims):
        try:
            temp_ls = [t[temp_var] for t in df['template']]
        except KeyError:
            raise KeyError(
                "variable {} not found in dataset".format(temp_var))
        temps = (xr.concat(temp_ls, dim=by).expand_dims(grp_dims)
                 .reset_coords(drop=True))
        res = estimate_shift_fft(temps, dim=by, on=to)
        shifts = res.sel(variable=['height', 'width'])
        corrs = res.sel(variable='corr')
        temps_sh = apply_shifts(temps, shifts)
        temp_dict[idxs] = temps
        shift_dict[idxs] = shifts
        corr_dict[idxs] = corrs
        tempsh_dict[idxs] = temps_sh
    temps = xrconcat_recursive(temp_dict, grp_dims).rename('temps')
    shifts = xrconcat_recursive(shift_dict, grp_dims).rename('shifts')
    corrs = xrconcat_recursive(corr_dict, grp_dims).rename('corrs')
    temps_sh = xrconcat_recursive(tempsh_dict, grp_dims).rename('temps_shifted')
    with ProgressBar():
        temps = temps.compute()
        shifts = shifts.compute()
        corrs = corrs.compute()
        temps_sh = temps_sh.compute()
    return xr.merge([temps, shifts, corrs, temps_sh]) 
開發者ID:DeniseCaiLab,項目名稱:minian,代碼行數:50,代碼來源:cross_registration.py

示例13: __init__

# 需要導入模塊: from dask import diagnostics [as 別名]
# 或者: from dask.diagnostics import ProgressBar [as 別名]
def __init__(self, params: dict, domain_slice=NO_SLICE):
        """
        Constructor
        """
        self._domain = None
        self._met_data = None
        self._state = None
        self._client = None
        self._domain_slice = domain_slice
        self.progress_bar = ProgressBar()
        self.params.update(params)
        logging.captureWarnings(True)
        self.logger = logging.getLogger(__name__)
        self.logger.setLevel(self.params['verbose'])

        formatter = logging.Formatter(' - '.join(
            ['%asctime)s', '%(name)s', '%(levelname)s', '%(message)s']))
        ch = logging.StreamHandler(sys.stdout)
        ch.setFormatter(formatter)
        ch.setLevel(self.params['verbose'])
        # set global dask scheduler
        if domain_slice is NO_SLICE:
            if self.params['scheduler'] in DASK_CORE_SCHEDULERS:
                dask.config.set(scheduler=self.params['scheduler'])
            else:
                from distributed import Client, progress
                if 'distributed' == self.params['scheduler']:
                    self._client = Client(
                        n_workers=self.params['num_workers'],
                        threads_per_worker=1)
                    if self.params['verbose'] == logging.DEBUG:
                        self.progress_bar = progress
                elif os.path.isfile(self.params['scheduler']):
                    self._client = Client(
                        scheduler_file=self.params['scheduler'])
                else:
                    self._client = Client(self.params['scheduler'])
        else:
            dask.config.set(scheduler=self.params['scheduler'])

        # Set up logging
        # If in verbose mode set up the progress bar
        if self.params['verbose'] == logging.DEBUG:
            if 'distributed' != self.params['scheduler']:
                self.progress_bar.register()
                self.progress_bar = lambda x: x
        else:
            # If not in verbose mode, create a dummy function
            self.progress_bar = lambda x: x
        # Create time vector(s)
        self._times = self._get_output_times(
            freq=self.params['out_freq'],
            period_ending=self.params['period_ending']) 
開發者ID:UW-Hydro,項目名稱:MetSim,代碼行數:55,代碼來源:metsim.py


注:本文中的dask.diagnostics.ProgressBar方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。