本文整理匯總了Python中dask.diagnostics.ProgressBar方法的典型用法代碼示例。如果您正苦於以下問題:Python diagnostics.ProgressBar方法的具體用法?Python diagnostics.ProgressBar怎麽用?Python diagnostics.ProgressBar使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類dask.diagnostics
的用法示例。
在下文中一共展示了diagnostics.ProgressBar方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: calculate_centroids_old
# 需要導入模塊: from dask import diagnostics [as 別名]
# 或者: from dask.diagnostics import ProgressBar [as 別名]
def calculate_centroids_old(cnmds, window, grp_dim=['animal', 'session']):
print("computing centroids")
cnt_list = []
for anm, cur_anm in cnmds.groupby('animal'):
for ss, cur_ss in cur_anm.groupby('session'):
# cnt = centroids(cur_ss['A_shifted'], window.sel(animal=anm))
cnt = da.delayed(centroids)(
cur_ss['A_shifted'], window.sel(animal=anm))
cnt_list.append(cnt)
with ProgressBar():
cnt_list, = da.compute(cnt_list)
cnts_ds = pd.concat(cnt_list, ignore_index=True)
cnts_ds.height = cnts_ds.height.astype(float)
cnts_ds.width = cnts_ds.width.astype(float)
cnts_ds.unit_id = cnts_ds.unit_id.astype(int)
cnts_ds.animal = cnts_ds.animal.astype(str)
cnts_ds.session = cnts_ds.session.astype(str)
cnts_ds.session_id = cnts_ds.session_id.astype(str)
return cnts_ds
示例2: centroids_distance_old
# 需要導入模塊: from dask import diagnostics [as 別名]
# 或者: from dask.diagnostics import ProgressBar [as 別名]
def centroids_distance_old(cents,
A,
window,
shift,
hamming,
corr,
tile=(50, 50)):
sessions = cents['session'].unique()
dim_h = (np.min(cents['height']), np.max(cents['height']))
dim_w = (np.min(cents['width']), np.max(cents['width']))
dist_list = []
for ssA, ssB in itt.combinations(sessions, 2):
# dist = _calc_cent_dist(ssA, ssB, cents, cnmds, window, tile, dim_h, dim_w)
dist = da.delayed(_calc_cent_dist)(ssA, ssB, cents, A, window,
tile, dim_h, dim_w, shift, hamming,
corr)
dist_list.append(dist)
with ProgressBar():
dist_list, = da.compute(dist_list)
dists = pd.concat(dist_list, ignore_index=True)
return dists
示例3: scale_varr
# 需要導入模塊: from dask import diagnostics [as 別名]
# 或者: from dask.diagnostics import ProgressBar [as 別名]
def scale_varr(varr, scale=(0, 1), inplace=False, pre_compute=False):
varr_max = varr.max()
varr_min = varr.min()
if pre_compute:
print("pre-computing min and max")
with ProgressBar():
varr_max = varr_max.compute()
varr_min = varr_min.compute()
if inplace:
varr_norm = varr
varr_norm -= varr_min
varr_norm *= 1 / (varr_max - varr_min)
varr_norm *= (scale[1] - scale[0])
varr_norm += scale[0]
else:
varr_norm = ((varr - varr_min) * (scale[1] - scale[0])
/ (varr_max - varr_min)) + scale[0]
return varr_norm
示例4: starfm
# 需要導入模塊: from dask import diagnostics [as 別名]
# 或者: from dask.diagnostics import ProgressBar [as 別名]
def starfm(fine_image_t0, coarse_image_t0, coarse_image_t1, profile, shape):
print ('Processing...')
prediction_da = predict(fine_image_t0, coarse_image_t0, coarse_image_t1, shape)
with ProgressBar():
prediction = prediction_da.compute()
return prediction
示例5: main
# 需要導入模塊: from dask import diagnostics [as 別名]
# 或者: from dask.diagnostics import ProgressBar [as 別名]
def main(input_file, dtypes, output_path):
"""Create Plots From data in input"""
data = pd.read_csv(input_file)
new_file_name = f"{input_file}.parq"
data.to_parquet(new_file_name)
data_types = json.load(open(dtypes, "r"))
plots = create_plots(new_file_name, data_types, output_path)
with ProgressBar():
dask.compute(*plots, scheduler="processes", n_workers=22)
示例6: detect_brightspot_perframe
# 需要導入模塊: from dask import diagnostics [as 別名]
# 或者: from dask.diagnostics import ProgressBar [as 別名]
def detect_brightspot_perframe(varray, thres=0.95):
print("creating parallel schedule")
spots = []
for fid, fm in varray.rolling(frame=1):
sp = delayed(lambda f: f > f.quantile(thres, interpolation='lower'))(
fm)
spots.append(sp)
with ProgressBar():
print("detecting bright spots by frame")
spots, = compute(spots)
print("concatenating results")
spots = xr.concat(spots, dim='frame')
return spots
# def correct_dust(varray, dust):
# mov_corr = varray.values
# nz = np.nonzero(dust)
# nz_tp = [(d0, d1) for d0, d1 in zip(nz[0], nz[1])]
# for i in range(np.count_nonzero(dust)):
# cur_dust = (nz[0][i], nz[1][i])
# cur_sur = set(
# itt.product(
# range(cur_dust[0] - 1, cur_dust[0] + 2),
# range(cur_dust[1] - 1, cur_dust[1] + 2))) - set(
# cur_dust) - set(nz_tp)
# cur_sur = list(
# filter(
# lambda d: 0 < d[0] < mov.shape[1] and 0 < d[1] < mov.shape[2],
# cur_sur))
# if len(cur_sur) > 0:
# sur_arr = np.empty((mov.shape[0], len(cur_sur)))
# for si, sur in enumerate(cur_sur):
# sur_arr[:, si] = mov[:, sur[0], sur[1]]
# mov_corr[:, cur_dust[0], cur_dust[1]] = np.mean(sur_arr, axis=1)
# else:
# print("unable to correct for point ({}, {})".format(
# cur_dust[0], cur_dust[1]))
# return mov_corr
示例7: remove_background_old
# 需要導入模塊: from dask import diagnostics [as 別名]
# 或者: from dask.diagnostics import ProgressBar [as 別名]
def remove_background_old(varray, window=51):
print("creating parallel schedule")
varr_ft = varray.astype(np.float32)
compute_list = []
for fid in varr_ft.coords['frame'].values:
fm = varr_ft.loc[dict(frame=fid)]
_ = delayed(remove_background_perframe_old)(fid, fm, varr_ft, window)
compute_list.append(_)
with ProgressBar():
print("removing background")
compute(compute_list)
print("normalizing result")
varr_ft = scale_varr(varr_ft, (0, 255)).astype(varray.dtype, copy=False)
print("background removal done")
return varr_ft.rename(varray.name + "_Filtered")
示例8: prune_targets_command
# 需要導入模塊: from dask import diagnostics [as 別名]
# 或者: from dask.diagnostics import ProgressBar [as 別名]
def prune_targets_command(args):
"""
Prune targets/find enriched features.
"""
# Loading from YAML is extremely slow. Therefore this is a potential performance improvement.
# Potential improvements are switching to JSON or to use a CLoader:
# https://stackoverflow.com/questions/27743711/can-i-speedup-yaml
# The alternative for which was opted in the end is binary pickling.
extension = PurePath(args.module_fname.name).suffixes
if is_valid_suffix(extension, 'ctx'):
if args.expression_mtx_fname is None:
LOGGER.error("No expression matrix is supplied.")
sys.exit(0)
LOGGER.info("Creating modules.")
modules = adjacencies2modules(args)
else:
LOGGER.info("Loading modules.")
try:
modules = load_modules(args.module_fname.name)
except ValueError as e:
LOGGER.error(e)
sys.exit(1)
if len(modules) == 0:
LOGGER.error("Not a single module loaded")
sys.exit(1)
LOGGER.info("Loading databases.")
dbs = _load_dbs(args.database_fname)
LOGGER.info("Calculating regulons.")
motif_annotations_fname = args.annotations_fname.name
calc_func = find_features if args.no_pruning == "yes" else prune2df
with ProgressBar() if args.mode == "dask_multiprocessing" else NoProgressBar():
df_motifs = calc_func(dbs, modules, motif_annotations_fname,
rank_threshold=args.rank_threshold,
auc_threshold=args.auc_threshold,
nes_threshold=args.nes_threshold,
client_or_address=args.mode,
module_chunksize=args.chunk_size,
num_workers=args.num_workers)
LOGGER.info("Writing results to file.")
if args.output.name == '<stdout>':
df_motifs.to_csv(args.output)
else:
save_enriched_motifs(df_motifs, args.output.name)
示例9: run
# 需要導入模塊: from dask import diagnostics [as 別名]
# 或者: from dask.diagnostics import ProgressBar [as 別名]
def run(args):
# Set logging level.
logging_debug_opt = False
LOGGER.addHandler(create_logging_handler(logging_debug_opt))
LOGGER.setLevel(logging.DEBUG)
LOGGER.info("Using configuration {}.".format(args.config_filename))
cfg = ConfigParser()
cfg.read(args.config_filename)
in_fname = cfg['data']['modules'] if not args.input else args.input
LOGGER.info("Loading modules from {}.".format(in_fname))
# Loading from YAML is extremely slow. Therefore this is a potential performance improvement.
# Potential improvements are switching to JSON or to use a CLoader:
# https://stackoverflow.com/questions/27743711/can-i-speedup-yaml
if in_fname.endswith('.yaml'):
modules = load_from_yaml(in_fname)
else:
with open(in_fname, 'rb') as f:
modules = pickle.load(f)
# Filter out modules with to few genes.
min_genes = int(cfg['parameters']['min_genes'])
modules = list(filter(lambda m: len(m) >= min_genes, modules))
LOGGER.info("Loading databases.")
def name(fname):
return os.path.splitext(os.path.basename(fname))[0]
db_fnames = list(mapcat(glob.glob, cfg['data']['databases'].split(";")))
dbs = [RankingDatabase(fname=fname, name=name(fname)) for fname in db_fnames]
LOGGER.info("Calculating regulons.")
motif_annotations_fname = cfg['data']['motif_annotations']
mode= cfg['parameters']['mode']
with ProgressBar() if mode == "dask_multiprocessing" else NoProgressBar():
df = prune2df(dbs, modules, motif_annotations_fname,
rank_threshold=int(cfg['parameters']['rank_threshold']),
auc_threshold=float(cfg['parameters']['auc_threshold']),
nes_threshold=float(cfg['parameters']['nes_threshold']),
client_or_address=mode,
module_chunksize=cfg['parameters']['chunk_size'],
num_workers=args.num_workers)
LOGGER.info("Writing results to file.")
df.to_csv(cfg['parameters']['output'] if not args.output else args.output)
示例10: template_match_with_binary_image
# 需要導入模塊: from dask import diagnostics [as 別名]
# 或者: from dask.diagnostics import ProgressBar [as 別名]
def template_match_with_binary_image(
self, binary_image, lazy_result=True, show_progressbar=True
):
"""Template match the signal dimensions with a binary image.
Used to find diffraction disks in convergent beam electron
diffraction data.
Might also work with non-binary images, but this haven't been
extensively tested.
Parameters
----------
binary_image : 2-D NumPy array
lazy_result : bool, default True
If True, will return a LazyDiffraction2D object. If False,
will compute the result and return a Diffraction2D object.
show_progressbar : bool, default True
Returns
-------
template_match : Diffraction2D object
Examples
--------
>>> s = ps.dummy_data.get_cbed_signal()
>>> binary_image = np.random.randint(0, 2, (6, 6))
>>> s_template = s.template_match_with_binary_image(
... binary_image, show_progressbar=False)
>>> s.plot()
See also
--------
template_match_disk
template_match_ring
"""
if self._lazy:
dask_array = self.data
else:
sig_chunks = list(self.axes_manager.signal_shape)[::-1]
chunks = [8] * len(self.axes_manager.navigation_shape)
chunks.extend(sig_chunks)
dask_array = da.from_array(self.data, chunks=chunks)
output_array = dt._template_match_with_binary_image(dask_array, binary_image)
if not lazy_result:
if show_progressbar:
pbar = ProgressBar()
pbar.register()
output_array = output_array.compute()
if show_progressbar:
pbar.unregister()
s = Diffraction2D(output_array)
else:
s = LazyDiffraction2D(output_array)
pst._copy_signal_all_axes_metadata(self, s)
return s
示例11: intensity_peaks
# 需要導入模塊: from dask import diagnostics [as 別名]
# 或者: from dask.diagnostics import ProgressBar [as 別名]
def intensity_peaks(
self, peak_array, disk_r=4, lazy_result=True, show_progressbar=True
):
"""Get intensity of a peak in the diffraction data.
The intensity is calculated by taking the mean of the
pixel values inside radius disk_r from the peak
position.
Parameters
----------
peak_array : Numpy or Dask array
Must have the same navigation shape as this signal.
disk_r : int
Radius of the disc chosen to take the mean value of
lazy_result : bool, default True
If True, will return a LazyDiffraction2D object. If False,
will compute the result and return a Diffraction2D object.
show_progressbar : bool, default True
Returns
-------
intensity_array: Numpy or Dask array
Same navigation shape as this signal, with peak position in
x and y coordinates and the mean intensity.
Examples
--------
>>> s = ps.dummy_data.get_cbed_signal()
>>> peak_array = s.find_peaks_lazy()
>>> intensity_array = s.intensity_peaks(peak_array, disk_r=6)
>>> intensity_array_computed = intensity_array.compute()
"""
if self._lazy:
dask_array = self.data
else:
sig_chunks = list(self.axes_manager.signal_shape)[::-1]
chunks = [8] * len(self.axes_manager.navigation_shape)
chunks.extend(sig_chunks)
dask_array = da.from_array(self.data, chunks=chunks)
chunks_peak = dask_array.chunks[:-2]
if hasattr(peak_array, "chunks"):
peak_array_dask = da.rechunk(peak_array, chunks=chunks_peak)
else:
peak_array_dask = da.from_array(peak_array, chunks=chunks_peak)
output_array = dt._intensity_peaks_image(dask_array, peak_array_dask, disk_r)
if not lazy_result:
if show_progressbar:
pbar = ProgressBar()
pbar.register()
output_array = output_array.compute()
if show_progressbar:
pbar.unregister()
return output_array
示例12: estimate_shifts
# 需要導入模塊: from dask import diagnostics [as 別名]
# 或者: from dask.diagnostics import ProgressBar [as 別名]
def estimate_shifts(minian_df, by='session', to='first', temp_var='org', template=None, rm_background=False):
if template is not None:
minian_df['template'] = template
def get_temp(row):
ds, temp = row['minian'], row['template']
try:
return ds.isel(frame=temp).drop('frame')
except TypeError:
func_dict = {
'mean': lambda v: v.mean('frame'),
'max': lambda v: v.max('frame')}
try:
return func_dict[temp](ds)
except KeyError:
raise NotImplementedError(
"template {} not understood".format(temp))
minian_df['template'] = minian_df.apply(get_temp, axis='columns')
grp_dims = list(minian_df.index.names)
grp_dims.remove(by)
temp_dict, shift_dict, corr_dict, tempsh_dict = [dict() for _ in range(4)]
for idxs, df in minian_df.groupby(level=grp_dims):
try:
temp_ls = [t[temp_var] for t in df['template']]
except KeyError:
raise KeyError(
"variable {} not found in dataset".format(temp_var))
temps = (xr.concat(temp_ls, dim=by).expand_dims(grp_dims)
.reset_coords(drop=True))
res = estimate_shift_fft(temps, dim=by, on=to)
shifts = res.sel(variable=['height', 'width'])
corrs = res.sel(variable='corr')
temps_sh = apply_shifts(temps, shifts)
temp_dict[idxs] = temps
shift_dict[idxs] = shifts
corr_dict[idxs] = corrs
tempsh_dict[idxs] = temps_sh
temps = xrconcat_recursive(temp_dict, grp_dims).rename('temps')
shifts = xrconcat_recursive(shift_dict, grp_dims).rename('shifts')
corrs = xrconcat_recursive(corr_dict, grp_dims).rename('corrs')
temps_sh = xrconcat_recursive(tempsh_dict, grp_dims).rename('temps_shifted')
with ProgressBar():
temps = temps.compute()
shifts = shifts.compute()
corrs = corrs.compute()
temps_sh = temps_sh.compute()
return xr.merge([temps, shifts, corrs, temps_sh])
示例13: __init__
# 需要導入模塊: from dask import diagnostics [as 別名]
# 或者: from dask.diagnostics import ProgressBar [as 別名]
def __init__(self, params: dict, domain_slice=NO_SLICE):
"""
Constructor
"""
self._domain = None
self._met_data = None
self._state = None
self._client = None
self._domain_slice = domain_slice
self.progress_bar = ProgressBar()
self.params.update(params)
logging.captureWarnings(True)
self.logger = logging.getLogger(__name__)
self.logger.setLevel(self.params['verbose'])
formatter = logging.Formatter(' - '.join(
['%asctime)s', '%(name)s', '%(levelname)s', '%(message)s']))
ch = logging.StreamHandler(sys.stdout)
ch.setFormatter(formatter)
ch.setLevel(self.params['verbose'])
# set global dask scheduler
if domain_slice is NO_SLICE:
if self.params['scheduler'] in DASK_CORE_SCHEDULERS:
dask.config.set(scheduler=self.params['scheduler'])
else:
from distributed import Client, progress
if 'distributed' == self.params['scheduler']:
self._client = Client(
n_workers=self.params['num_workers'],
threads_per_worker=1)
if self.params['verbose'] == logging.DEBUG:
self.progress_bar = progress
elif os.path.isfile(self.params['scheduler']):
self._client = Client(
scheduler_file=self.params['scheduler'])
else:
self._client = Client(self.params['scheduler'])
else:
dask.config.set(scheduler=self.params['scheduler'])
# Set up logging
# If in verbose mode set up the progress bar
if self.params['verbose'] == logging.DEBUG:
if 'distributed' != self.params['scheduler']:
self.progress_bar.register()
self.progress_bar = lambda x: x
else:
# If not in verbose mode, create a dummy function
self.progress_bar = lambda x: x
# Create time vector(s)
self._times = self._get_output_times(
freq=self.params['out_freq'],
period_ending=self.params['period_ending'])