當前位置: 首頁>>代碼示例>>Python>>正文


Python array.ones方法代碼示例

本文整理匯總了Python中dask.array.ones方法的典型用法代碼示例。如果您正苦於以下問題:Python array.ones方法的具體用法?Python array.ones怎麽用?Python array.ones使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在dask.array的用法示例。


在下文中一共展示了array.ones方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_transform

# 需要導入模塊: from dask import array [as 別名]
# 或者: from dask.array import ones [as 別名]
def test_transform(comm):
    cosmo = cosmology.Planck15

    data = numpy.ones(100, dtype=[
            ('Position', ('f4', 3)),
            ('Velocity', ('f4', 3))]
            )

    source = ArrayCatalog(data, BoxSize=100, Nmesh=32, comm=comm)

    source['Velocity'] = source['Position'] + source['Velocity']

    source['Position'] = source['Position'] + source['Velocity']

    # Position triggers  Velocity which triggers Position and Velocity
    # which resolves to the true data.
    # so total is 3.
    assert_allclose(source['Position'], 3)

    mesh = source.to_mesh() 
開發者ID:bccp,項目名稱:nbodykit,代碼行數:22,代碼來源:test_catalog.py

示例2: test_delitem

# 需要導入模塊: from dask import array [as 別名]
# 或者: from dask.array import ones [as 別名]
def test_delitem(comm):

    source = UniformCatalog(nbar=2e-4, BoxSize=512., seed=42, comm=comm)

    # add a test column
    test = numpy.ones(source.size)
    source['test'] = test

    # cannot delete hard coded column
    with pytest.raises(ValueError):
        del source['Position']

    # cannot delete missing column
    with pytest.raises(ValueError):
        del source['BAD_COLUMN']

    assert 'test' in source
    del source['test']
    assert 'test' not in source 
開發者ID:bccp,項目名稱:nbodykit,代碼行數:21,代碼來源:test_catalog.py

示例3: test_simple

# 需要導入模塊: from dask import array [as 別名]
# 或者: from dask.array import ones [as 別名]
def test_simple(self):
        array0 = da.ones(shape=(10, 10, 40, 40), chunks=(5, 5, 5, 5))
        s0 = LazyDiffraction2D(array0)
        s0_r = s0.radial_average()
        assert (s0_r.data[:, :, :-1] == 1).all()

        data_shape = 2, 2, 11, 11
        array1 = np.zeros(data_shape)
        array1[:, :, 5, 5] = 1
        dask_array = da.from_array(array1, chunks=(1, 1, 1, 1))
        s1 = LazyDiffraction2D(dask_array)
        s1.axes_manager.signal_axes[0].offset = -5
        s1.axes_manager.signal_axes[1].offset = -5
        s1_r = s1.radial_average()
        assert np.all(s1_r.data[:, :, 0] == 1)
        assert np.all(s1_r.data[:, :, 1:] == 0) 
開發者ID:pyxem,項目名稱:pyxem,代碼行數:18,代碼來源:test_pixelated_stem_class.py

示例4: test_add_missing_coordinates

# 需要導入模塊: from dask import array [as 別名]
# 或者: from dask.array import ones [as 別名]
def test_add_missing_coordinates(self):
        """Test coordinate updating."""
        import dask.array as da
        from xarray import DataArray
        from pyresample.bilinear.xarr import XArrayResamplerBilinear

        resampler = XArrayResamplerBilinear(self.source_def, self.target_def,
                                            self.radius)
        bands = ['R', 'G', 'B']
        data = DataArray(da.ones((3, 10, 10)), dims=('bands', 'y', 'x'),
                         coords={'bands': bands,
                                 'y': np.arange(10), 'x': np.arange(10)})
        resampler._add_missing_coordinates(data)
        # X and Y coordinates should not change
        self.assertIsNone(resampler.out_coords_x)
        self.assertIsNone(resampler.out_coords_y)
        self.assertIsNone(resampler.out_coords['x'])
        self.assertIsNone(resampler.out_coords['y'])
        self.assertTrue('bands' in resampler.out_coords)
        self.assertTrue(np.all(resampler.out_coords['bands'] == bands)) 
開發者ID:pytroll,項目名稱:pyresample,代碼行數:22,代碼來源:test_bilinear.py

示例5: _mean4

# 需要導入模塊: from dask import array [as 別名]
# 或者: from dask.array import ones [as 別名]
def _mean4(data, offset=(0, 0), block_id=None):
    rows, cols = data.shape
    # we assume that the chunks except the first ones are aligned
    if block_id[0] == 0:
        row_offset = offset[0] % 2
    else:
        row_offset = 0
    if block_id[1] == 0:
        col_offset = offset[1] % 2
    else:
        col_offset = 0
    row_after = (row_offset + rows) % 2
    col_after = (col_offset + cols) % 2
    pad = ((row_offset, row_after), (col_offset, col_after))

    rows2 = rows + row_offset + row_after
    cols2 = cols + col_offset + col_after

    av_data = np.pad(data, pad, 'edge')
    new_shape = (int(rows2 / 2.), 2, int(cols2 / 2.), 2)
    data_mean = np.nanmean(av_data.reshape(new_shape), axis=(1, 3))
    data_mean = np.repeat(np.repeat(data_mean, 2, axis=0), 2, axis=1)
    data_mean = data_mean[row_offset:row_offset + rows, col_offset:col_offset + cols]
    return data_mean 
開發者ID:pytroll,項目名稱:satpy,代碼行數:26,代碼來源:__init__.py

示例6: test_compute

# 需要導入模塊: from dask import array [as 別名]
# 或者: from dask.array import ones [as 別名]
def test_compute(self):
        """Test count bucket resampler computation."""
        import dask.array as da
        # 1D data
        self.bucket.resampler = mock.MagicMock()
        data = da.ones((5,))
        self.bucket.resampler.get_count.return_value = data
        res = self.bucket.compute(data)
        self.bucket.resampler.get_count.assert_called_once_with()
        self.assertEqual(res.shape, (1, 5))
        # 2D data
        self.bucket.resampler = mock.MagicMock()
        data = da.ones((5, 5))
        self.bucket.resampler.get_count.return_value = data
        res = self.bucket.compute(data)
        self.bucket.resampler.get_count.assert_called_once_with()
        self.assertEqual(res.shape, (1, 5, 5))
        # 3D data
        self.bucket.resampler = mock.MagicMock()
        data = da.ones((3, 5, 5))
        self.bucket.resampler.get_count.return_value = data[0, :, :]
        res = self.bucket.compute(data)
        self.assertEqual(res.shape, (3, 5, 5)) 
開發者ID:pytroll,項目名稱:satpy,代碼行數:25,代碼來源:test_resample.py

示例7: test_resample

# 需要導入模塊: from dask import array [as 別名]
# 或者: from dask.array import ones [as 別名]
def test_resample(self, pyresample_bucket):
        """Test fraction bucket resamplers resample method."""
        import xarray as xr
        import dask.array as da
        import numpy as np

        self.bucket.resampler = mock.MagicMock()
        self.bucket.precompute = mock.MagicMock()
        self.bucket.compute = mock.MagicMock()

        # Fractions return a dict
        data = xr.DataArray(da.ones((1, 5, 5)), dims=('bands', 'y', 'x'))
        arr = da.ones((5, 5))
        self.bucket.compute.return_value = {0: arr, 1: arr, 2: arr}
        res = self.bucket.resample(data)
        self.assertTrue('categories' in res.coords)
        self.assertTrue('categories' in res.dims)
        self.assertTrue(np.all(res.coords['categories'] == np.array([0, 1, 2]))) 
開發者ID:pytroll,項目名稱:satpy,代碼行數:20,代碼來源:test_resample.py

示例8: setUp

# 需要導入模塊: from dask import array [as 別名]
# 或者: from dask.array import ones [as 別名]
def setUp(self):
        """Create test data."""
        from satpy.composites import GenericCompositor
        self.comp = GenericCompositor(name='test')
        self.comp2 = GenericCompositor(name='test2', common_channel_mask=False)

        all_valid = np.ones((1, 2, 2))
        self.all_valid = xr.DataArray(all_valid, dims=['bands', 'y', 'x'])
        first_invalid = np.reshape(np.array([np.nan, 1., 1., 1.]), (1, 2, 2))
        self.first_invalid = xr.DataArray(first_invalid,
                                          dims=['bands', 'y', 'x'])
        second_invalid = np.reshape(np.array([1., np.nan, 1., 1.]), (1, 2, 2))
        self.second_invalid = xr.DataArray(second_invalid,
                                           dims=['bands', 'y', 'x'])
        wrong_shape = np.reshape(np.array([1., 1., 1.]), (1, 3, 1))
        self.wrong_shape = xr.DataArray(wrong_shape, dims=['bands', 'y', 'x']) 
開發者ID:pytroll,項目名稱:satpy,代碼行數:18,代碼來源:test_composites.py

示例9: test_multiple_sensors

# 需要導入模塊: from dask import array [as 別名]
# 或者: from dask.array import ones [as 別名]
def test_multiple_sensors(self):
        """Test the background compositing from multiple sensor data."""
        from satpy.composites import BackgroundCompositor
        import numpy as np
        comp = BackgroundCompositor("name")

        # L mode images
        attrs = {'mode': 'L', 'area': 'foo'}
        foreground = xr.DataArray(np.array([[[1., 0.5],
                                             [0., np.nan]]]),
                                  dims=('bands', 'y', 'x'),
                                  coords={'bands': [c for c in attrs['mode']]},
                                  attrs=attrs.copy())
        foreground.attrs['sensor'] = 'abi'
        background = xr.DataArray(np.ones((1, 2, 2)), dims=('bands', 'y', 'x'),
                                  coords={'bands': [c for c in attrs['mode']]},
                                  attrs=attrs.copy())
        background.attrs['sensor'] = 'glm'
        res = comp([foreground, background])
        self.assertEqual(res.attrs['area'], 'foo')
        self.assertTrue(np.all(res == np.array([[1., 0.5], [0., 1.]])))
        self.assertEqual(res.attrs['mode'], 'L')
        self.assertEqual(res.attrs['sensor'], {'abi', 'glm'}) 
開發者ID:pytroll,項目名稱:satpy,代碼行數:25,代碼來源:test_composites.py

示例10: test_dims_setting

# 需要導入模塊: from dask import array [as 別名]
# 或者: from dask.array import ones [as 別名]
def test_dims_setting(expected_starting_dims, set_dims, expected_ending_dims):
    # Read file
    img = ArrayLikeReader(da.ones((2, 2, 2)))

    # Check basics
    assert img.dims == expected_starting_dims

    # Set dims
    img.dims = set_dims

    # Check dims after update
    assert img.dims == expected_ending_dims 
開發者ID:AllenCellModeling,項目名稱:aicsimageio,代碼行數:14,代碼來源:test_arraylike_reader.py

示例11: test_guess_multiscale

# 需要導入模塊: from dask import array [as 別名]
# 或者: from dask.array import ones [as 別名]
def test_guess_multiscale():
    data = np.random.random((10, 15))
    assert not guess_multiscale(data)[0]

    data = np.random.random((10, 15, 6))
    assert not guess_multiscale(data)[0]

    data = [np.random.random((10, 15, 6))]
    assert not guess_multiscale(data)[0]

    data = [np.random.random((10, 15, 6)), np.random.random((5, 7, 3))]
    assert guess_multiscale(data)[0]

    data = [np.random.random((10, 15, 6)), np.random.random((10, 7, 3))]
    assert guess_multiscale(data)[0]

    data = tuple(data)
    assert guess_multiscale(data)[0]

    data = tuple(
        pyramid_gaussian(np.random.random((10, 15)), multichannel=False)
    )
    assert guess_multiscale(data)[0]

    data = np.asarray(
        tuple(pyramid_gaussian(np.random.random((10, 15)), multichannel=False))
    )
    assert guess_multiscale(data)[0]

    # Check for integer overflow with big data
    s = 8192
    data = [da.ones((s,) * 3), da.ones((s // 2,) * 3), da.ones((s // 4,) * 3)]
    assert guess_multiscale(data)[0] 
開發者ID:napari,項目名稱:napari,代碼行數:35,代碼來源:test_image_utils.py

示例12: test_dask_array_creates_cache

# 需要導入模塊: from dask import array [as 別名]
# 或者: from dask.array import ones [as 別名]
def test_dask_array_creates_cache():
    """Test that adding a dask array creates a dask cache and turns of fusion.
    """
    # by default we have no dask_cache and task fusion is active
    original = dask.config.get("optimization.fuse.active", None)

    def mock_set_view_slice():
        assert dask.config.get("optimization.fuse.active") is False

    layer = layers.Image(da.ones((100, 100)))
    layer._set_view_slice = mock_set_view_slice
    layer.set_view_slice()
    # adding a dask array will turn on the cache, and turn off task fusion.
    assert isinstance(utils.dask_cache, dask.cache.Cache)
    assert dask.config.get("optimization.fuse.active", None) == original

    # if the dask version is too low to remove task fusion, emit a warning
    _dask_ver = dask.__version__
    dask.__version__ = '2.14.0'
    with pytest.warns(UserWarning) as record:
        _ = layers.Image(da.ones((100, 100)))

    assert 'upgrade Dask to v2.15.0 or later' in record[0].message.args[0]
    dask.__version__ = _dask_ver

    # make sure we can resize the cache
    assert utils.dask_cache.cache.total_bytes > 1000
    utils.resize_dask_cache(1000)
    assert utils.dask_cache.cache.total_bytes <= 1000

    # This should only affect dask arrays, and not numpy data
    def mock_set_view_slice2():
        assert dask.config.get("optimization.fuse.active", None) == original

    layer2 = layers.Image(np.ones((100, 100)))
    layer2._set_view_slice = mock_set_view_slice2
    layer2.set_view_slice()

    # clean up cache
    utils.dask_cache = None 
開發者ID:napari,項目名稱:napari,代碼行數:42,代碼來源:test_dask_layers.py

示例13: test_list_of_dask_arrays_creates_cache

# 需要導入模塊: from dask import array [as 別名]
# 或者: from dask.array import ones [as 別名]
def test_list_of_dask_arrays_creates_cache():
    """Test that adding a list of dask array also creates a dask cache."""
    original = dask.config.get("optimization.fuse.active", None)
    _ = layers.Image([da.ones((100, 100)), da.ones((20, 20))])
    assert isinstance(utils.dask_cache, dask.cache.Cache)
    assert dask.config.get("optimization.fuse.active", None) == original 
開發者ID:napari,項目名稱:napari,代碼行數:8,代碼來源:test_dask_layers.py

示例14: test_simple

# 需要導入模塊: from dask import array [as 別名]
# 或者: from dask.array import ones [as 別名]
def test_simple(self):
        dask_array = da.ones((10, 10, 50, 50), chunks=(5, 5, 25, 25))
        data = lt._calculate_function_on_dask_array(
            dask_array, sum_frame, show_progressbar=False
        )
        assert data.shape == (10, 10)
        assert (data == (np.ones((10, 10)) * 50 * 50)).all() 
開發者ID:pyxem,項目名稱:pyxem,代碼行數:9,代碼來源:test_lazy_tools.py

示例15: test_1d_nav

# 需要導入模塊: from dask import array [as 別名]
# 或者: from dask.array import ones [as 別名]
def test_1d_nav(self):
        dask_array = da.ones((10, 50, 50), chunks=(5, 25, 25))
        data = lt._calculate_function_on_dask_array(
            dask_array, sum_frame, show_progressbar=False
        )
        assert data.shape == (10,)
        assert (data == (np.ones((10,)) * 50 * 50)).all() 
開發者ID:pyxem,項目名稱:pyxem,代碼行數:9,代碼來源:test_lazy_tools.py


注:本文中的dask.array.ones方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。