本文整理匯總了Python中dask.array.from_array方法的典型用法代碼示例。如果您正苦於以下問題:Python array.from_array方法的具體用法?Python array.from_array怎麽用?Python array.from_array使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類dask.array
的用法示例。
在下文中一共展示了array.from_array方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: ConstantArray
# 需要導入模塊: from dask import array [as 別名]
# 或者: from dask.array import from_array [as 別名]
def ConstantArray(value, size, chunks=100000):
"""
Return a dask array of the specified ``size`` holding a single value.
This uses numpy's "stride tricks" to avoid replicating
the data in memory for each element of the array.
Parameters
----------
value : float
the scalar value to fill the array with
size : int
the length of the returned dask array
chunks : int, optional
the size of the dask array chunks
"""
ele = numpy.array(value)
toret = numpy.lib.stride_tricks.as_strided(ele, [size] + list(ele.shape), [0] + list(ele.strides))
return da.from_array(toret, chunks=chunks, name=False)
示例2: test_permutation
# 需要導入模塊: from dask import array [as 別名]
# 或者: from dask.array import from_array [as 別名]
def test_permutation(permutation_params):
n_features, n_instances, n_permutations, mult = permutation_params
xshape, yshape = (n_instances[0], n_features), (n_instances[1], n_features)
np.random.seed(0)
x = np.random.random(xshape).astype('float32')
y = np.random.random(yshape).astype('float32') * mult
xda = da.from_array(x, chunks=xshape)
yda = da.from_array(y, chunks=yshape)
kwargs = {'sigma': np.array([1.])}
p_val = permutation_test(x, y, n_permutations=n_permutations,
metric=maximum_mean_discrepancy, **kwargs)
p_val_da = permutation_test(xda, yda, n_permutations=n_permutations,
metric=maximum_mean_discrepancy, **kwargs)
if mult == 1:
assert p_val > .2 and p_val_da > .2
elif mult > 1:
assert p_val <= .2 and p_val_da <= .2
示例3: test_gaussian_kernel
# 需要導入模塊: from dask import array [as 別名]
# 或者: from dask.array import from_array [as 別名]
def test_gaussian_kernel(gaussian_kernel_params):
sigma, n_features, n_instances = gaussian_kernel_params
xshape, yshape = (n_instances[0], n_features), (n_instances[1], n_features)
x = np.random.random(xshape).astype('float32')
y = np.random.random(yshape).astype('float32')
xda = da.from_array(x, chunks=xshape)
yda = da.from_array(y, chunks=yshape)
gk_xy = gaussian_kernel(x, y, sigma=sigma)
gk_xx = gaussian_kernel(x, x, sigma=sigma)
gk_xy_da = gaussian_kernel(xda, yda, sigma=sigma).compute()
gk_xx_da = gaussian_kernel(xda, xda, sigma=sigma).compute()
assert gk_xy.shape == n_instances and gk_xx.shape == (xshape[0], xshape[0])
assert (gk_xx == gk_xx_da).all() and (gk_xy == gk_xy_da).all()
assert gk_xx.trace() == xshape[0] * len(sigma)
assert (gk_xx > 0.).all() and (gk_xy > 0.).all()
示例4: test_pairwise
# 需要導入模塊: from dask import array [as 別名]
# 或者: from dask.array import from_array [as 別名]
def test_pairwise(pairwise_params):
n_features, n_instances = pairwise_params
xshape, yshape = (n_instances[0], n_features), (n_instances[1], n_features)
np.random.seed(0)
x = np.random.random(xshape).astype('float32')
y = np.random.random(yshape).astype('float32')
xda = da.from_array(x, chunks=xshape)
yda = da.from_array(y, chunks=yshape)
dist_xx = pairwise_distance(x, x)
dist_xy = pairwise_distance(x, y)
dist_xx_da = pairwise_distance(xda, xda).compute()
dist_xy_da = pairwise_distance(xda, yda).compute()
assert dist_xx.shape == dist_xx_da.shape == (xshape[0], xshape[0])
assert dist_xy.shape == dist_xy_da.shape == n_instances
assert (dist_xx == dist_xx_da).all() and (dist_xy == dist_xy_da).all()
assert dist_xx.trace() == 0.
示例5: test_mmd
# 需要導入模塊: from dask import array [as 別名]
# 或者: from dask.array import from_array [as 別名]
def test_mmd(mmd_params):
n_features, n_instances = mmd_params
xshape, yshape = (n_instances[0], n_features), (n_instances[1], n_features)
np.random.seed(0)
x = np.random.random(xshape).astype('float32')
y = np.random.random(yshape).astype('float32')
xda = da.from_array(x, chunks=xshape)
yda = da.from_array(y, chunks=yshape)
kwargs = {'sigma': np.array([1.])}
mmd_xx = maximum_mean_discrepancy(x, x, **kwargs)
mmd_xy = maximum_mean_discrepancy(x, y, **kwargs)
mmd_xx_da = maximum_mean_discrepancy(xda, xda, **kwargs).compute()
mmd_xy_da = maximum_mean_discrepancy(xda, yda, **kwargs).compute()
assert mmd_xx == mmd_xx_da and mmd_xy == mmd_xy_da
assert mmd_xy > mmd_xx
示例6: _get_hot_pixel_test_data_2d
# 需要導入模塊: from dask import array [as 別名]
# 或者: from dask.array import from_array [as 別名]
def _get_hot_pixel_test_data_2d():
"""Get artifical 2D dataset with hot pixels.
Values are 50, except [21, 11] and [5, 38]
being 50000 (to represent a "hot pixel").
Examples
--------
>>> import pyxem.dummy_data.dask_test_data as dtd
>>> data = dtd._get_hot_pixel_test_data_2d()
"""
data = np.ones((40, 50)) * 50
data[21, 11] = 50000
data[5, 38] = 50000
dask_array = da.from_array(data, chunks=(5, 5))
return dask_array
示例7: _get_hot_pixel_test_data_3d
# 需要導入模塊: from dask import array [as 別名]
# 或者: from dask.array import from_array [as 別名]
def _get_hot_pixel_test_data_3d():
"""Get artifical 3D dataset with hot pixels.
Values are 50, except [2, 21, 11] and [1, 5, 38]
being 50000 (to represent a "hot pixel").
Examples
--------
>>> import pyxem.dummy_data.dask_test_data as dtd
>>> data = dtd._get_hot_pixel_test_data_3d()
"""
data = np.ones((5, 40, 50)) * 50
data[2, 21, 11] = 50000
data[1, 5, 38] = 50000
dask_array = da.from_array(data, chunks=(5, 5, 5))
return dask_array
示例8: _get_hot_pixel_test_data_4d
# 需要導入模塊: from dask import array [as 別名]
# 或者: from dask.array import from_array [as 別名]
def _get_hot_pixel_test_data_4d():
"""Get artifical 4D dataset with hot pixels.
Values are 50, except [4, 2, 21, 11] and [6, 1, 5, 38]
being 50000 (to represent a "hot pixel").
Examples
--------
>>> import pyxem.dummy_data.dask_test_data as dtd
>>> data = dtd._get_hot_pixel_test_data_4d()
"""
data = np.ones((10, 5, 40, 50)) * 50
data[4, 2, 21, 11] = 50000
data[6, 1, 5, 38] = 50000
dask_array = da.from_array(data, chunks=(5, 5, 5, 5))
return dask_array
示例9: _get_dead_pixel_test_data_2d
# 需要導入模塊: from dask import array [as 別名]
# 或者: from dask.array import from_array [as 別名]
def _get_dead_pixel_test_data_2d():
"""Get artifical 2D dataset with dead pixels.
Values are 50, except [14, 42] and [2, 12]
being 0 (to represent a "dead pixel").
Examples
--------
>>> import pyxem.dummy_data.dask_test_data as dtd
>>> data = dtd._get_dead_pixel_test_data_2d()
"""
data = np.ones((40, 50)) * 50
data[14, 42] = 0
data[2, 12] = 0
dask_array = da.from_array(data, chunks=(5, 5))
return dask_array
示例10: _get_dead_pixel_test_data_3d
# 需要導入模塊: from dask import array [as 別名]
# 或者: from dask.array import from_array [as 別名]
def _get_dead_pixel_test_data_3d():
"""Get artifical 3D dataset with dead pixels.
Values are 50, except [:, 14, 42] and [:, 2, 12]
being 0 (to represent a "dead pixel").
Examples
--------
>>> import pyxem.dummy_data.dask_test_data as dtd
>>> data = dtd._get_dead_pixel_test_data_3d()
"""
data = np.ones((5, 40, 50)) * 50
data[:, 14, 42] = 0
data[:, 2, 12] = 0
dask_array = da.from_array(data, chunks=(5, 5, 5))
return dask_array
示例11: test_dask_array
# 需要導入模塊: from dask import array [as 別名]
# 或者: from dask.array import from_array [as 別名]
def test_dask_array(self):
numpy_array = np.zeros((10, 10, 50, 50))
numpy_array[:, :, 25, 25] = 1
peak_array = np.zeros((numpy_array.shape[:-2]), dtype=np.object)
real_array = np.zeros((numpy_array.shape[:-2]), dtype=np.object)
for index in np.ndindex(numpy_array.shape[:-2]):
islice = np.s_[index]
peak_array[islice] = np.asarray([(27, 27)])
real_array[islice] = np.asarray([(25, 25)])
dask_array = da.from_array(numpy_array, chunks=(5, 5, 5, 5))
dask_peak_array = da.from_array(peak_array, chunks=(5, 5))
square_size = 12
data = dt._peak_refinement_centre_of_mass(
dask_array, dask_peak_array, square_size
)
data = data.compute()
assert data.shape == (10, 10)
assert np.sum(data - real_array).sum() == 0
示例12: test_array_different_dimensions
# 需要導入模塊: from dask import array [as 別名]
# 或者: from dask.array import from_array [as 別名]
def test_array_different_dimensions(self, nav_dims):
shape = list(np.random.randint(2, 6, size=nav_dims))
shape.extend([50, 50])
chunks = [1] * nav_dims
chunks.extend([25, 25])
dask_array = da.random.random(size=shape, chunks=chunks)
peak_array = np.zeros((dask_array.shape[:-2]), dtype=np.object)
for index in np.ndindex(dask_array.shape[:-2]):
islice = np.s_[index]
peak_array[islice] = np.asarray([(27, 27)])
square_size = 12
peak_array_dask = da.from_array(peak_array, chunks=chunks[:-2])
match_array_dask = dt._peak_refinement_centre_of_mass(
dask_array, peak_array_dask, square_size
)
assert len(dask_array.shape) == nav_dims + 2
match_array = match_array_dask.compute()
assert peak_array_dask.shape == match_array.shape
示例13: test_intensity_peaks_image_disk_r
# 需要導入模塊: from dask import array [as 別名]
# 或者: from dask.array import from_array [as 別名]
def test_intensity_peaks_image_disk_r(self):
numpy_array = np.zeros((50, 50))
numpy_array[27, 29] = 2
numpy_array[11, 15] = 1
image = da.from_array(numpy_array, chunks=(50, 50))
peak = np.array([[27, 29], [11, 15]], np.int32)
peak_dask = da.from_array(peak, chunks=(1, 1))
disk_r0 = 1
disk_r1 = 2
intensity0 = dt._intensity_peaks_image_single_frame(image, peak_dask, disk_r0)
intensity1 = dt._intensity_peaks_image_single_frame(image, peak_dask, disk_r1)
assert intensity0[0].all() == np.array([27.0, 29.0, 2 / 9]).all()
assert intensity0[1].all() == np.array([11.0, 15.0, 1 / 9]).all()
assert intensity1[0].all() == np.array([27.0, 29.0, 2 / 25]).all()
assert intensity1[1].all() == np.array([11.0, 15.0, 1 / 25]).all()
assert intensity0.shape == intensity1.shape == (2, 3)
示例14: test_intensity_peaks_chunk
# 需要導入模塊: from dask import array [as 別名]
# 或者: from dask.array import from_array [as 別名]
def test_intensity_peaks_chunk(self):
numpy_array = np.zeros((2, 2, 50, 50))
numpy_array[:, :, 27, 27] = 1
peak_array = np.zeros(
(numpy_array.shape[0], numpy_array.shape[1]), dtype=np.object
)
for index in np.ndindex(numpy_array.shape[:-2]):
islice = np.s_[index]
peak_array[islice] = np.asarray([(27, 27)])
dask_array = da.from_array(numpy_array, chunks=(1, 1, 25, 25))
peak_array_dask = da.from_array(peak_array, chunks=(1, 1))
disk_r = 2
intensity_array = dt._intensity_peaks_image_chunk(
dask_array, peak_array_dask, disk_r
)
assert intensity_array.shape == peak_array_dask.shape
示例15: test_intensity_peaks_dask
# 需要導入模塊: from dask import array [as 別名]
# 或者: from dask.array import from_array [as 別名]
def test_intensity_peaks_dask(self):
numpy_array = np.zeros((10, 10, 50, 50))
numpy_array[:, :, 27, 27] = 1
peak_array = np.zeros(
(numpy_array.shape[0], numpy_array.shape[1]), dtype=np.object
)
for index in np.ndindex(numpy_array.shape[:-2]):
islice = np.s_[index]
peak_array[islice] = np.asarray([(27, 27)])
dask_array = da.from_array(numpy_array, chunks=(5, 5, 5, 5))
dask_peak_array = da.from_array(peak_array, chunks=(5, 5))
disk_r = 2
intensity_array = dt._intensity_peaks_image(dask_array, dask_peak_array, disk_r)
intensity_array_computed = intensity_array.compute()
assert intensity_array_computed.shape == peak_array.shape