當前位置: 首頁>>代碼示例>>Python>>正文


Python array.concatenate方法代碼示例

本文整理匯總了Python中dask.array.concatenate方法的典型用法代碼示例。如果您正苦於以下問題:Python array.concatenate方法的具體用法?Python array.concatenate怎麽用?Python array.concatenate使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在dask.array的用法示例。


在下文中一共展示了array.concatenate方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _concatenate_chunks

# 需要導入模塊: from dask import array [as 別名]
# 或者: from dask.array import concatenate [as 別名]
def _concatenate_chunks(chunks):
    """Concatenate chunks to full output array."""
    # Form the full array
    col, res = [], []
    prev_y = 0
    for y, x in sorted(chunks):
        if len(chunks[(y, x)]) > 1:
            chunk = da.nanmax(da.stack(chunks[(y, x)], axis=-1), axis=-1)
        else:
            chunk = chunks[(y, x)][0]
        if y == prev_y:
            col.append(chunk)
            continue
        res.append(da.concatenate(col, axis=1))
        col = [chunk]
        prev_y = y
    res.append(da.concatenate(col, axis=1))

    res = da.concatenate(res, axis=2).squeeze()

    return res 
開發者ID:pytroll,項目名稱:pyresample,代碼行數:23,代碼來源:__init__.py

示例2: find_concat_dim

# 需要導入模塊: from dask import array [as 別名]
# 或者: from dask.array import concatenate [as 別名]
def find_concat_dim(da, possible_concat_dims):
    """ look for available dimensions in dataaray and pick the one
    from a list of candidates

    PARAMETERS
    ----------
    da : xarray.DataArray
        xmitgcm llc data array
    possible_concat_dims : list
        list of potential dims

    RETURNS
    -------
    out : str
        dimension on which to concatenate

    """
    out = None
    for d in possible_concat_dims:
        if d in da.dims:
            out = d
    return out 
開發者ID:MITgcm,項目名稱:xmitgcm,代碼行數:24,代碼來源:utils.py

示例3: handle_crash

# 需要導入模塊: from dask import array [as 別名]
# 或者: from dask.array import concatenate [as 別名]
def handle_crash(varr, vpath, ssname, vlist, varr_list, frame_dict):
    seg1_list = list(filter(lambda v: re.search('seg1', v), vlist))
    seg2_list = list(filter(lambda v: re.search('seg2', v), vlist))
    if seg1_list and seg2_list:
        tframe = frame_dict[ssname]
        varr1 = darr.concatenate(
            list(compress(varr_list, seg1_list)),
            axis=0)
        varr2 = darr.concatenate(
            list(compress(varr_list, seg2_list)),
            axis=0)
        fm1, fm2 = varr1.shape[0], varr2.shape[0]
        fm_crds = varr.coords['frame']
        fm_crds1 = fm_crds.sel(frame=slice(None, fm1 - 1)).values
        fm_crds2 = fm_crds.sel(frame=slice(fm1, None)).values
        fm_crds2 = fm_crds2 + (tframe - fm_crds2.max())
        fm_crds_new = np.concatenate([fm_crds1, fm_crds2], axis=0)
        return varr.assign_coords(frame=fm_crds_new)
    else:
        return varr 
開發者ID:DeniseCaiLab,項目名稱:minian,代碼行數:22,代碼來源:utilities.py

示例4: test_blockwise_shufflesplit

# 需要導入模塊: from dask import array [as 別名]
# 或者: from dask.array import concatenate [as 別名]
def test_blockwise_shufflesplit():
    splitter = dask_ml.model_selection.ShuffleSplit(random_state=0)
    assert splitter.get_n_splits() == 10
    gen = splitter.split(dX)

    train_idx, test_idx = next(gen)
    assert isinstance(train_idx, da.Array)
    assert isinstance(test_idx, da.Array)

    assert train_idx.shape == (99,)  # 90% of 110
    assert test_idx.shape == (11,)

    assert train_idx.chunks == ((45, 45, 9),)
    assert test_idx.chunks == ((5, 5, 1),)

    counts = pd.value_counts(train_idx.compute())
    assert counts.max() == 1

    N = len(X)

    np.testing.assert_array_equal(
        np.unique(da.concatenate([train_idx, test_idx])), np.arange(N)
    ) 
開發者ID:dask,項目名稱:dask-ml,代碼行數:25,代碼來源:test_split.py

示例5: _slice_padded

# 需要導入模塊: from dask import array [as 別名]
# 或者: from dask.array import concatenate [as 別名]
def _slice_padded(self, _bounds):
        pads = (max(-_bounds[0], 0), max(-_bounds[1], 0),
                max(_bounds[2]-self.shape[2], 0), max(_bounds[3]-self.shape[1], 0))
        bounds = (max(_bounds[0], 0),
                  max(_bounds[1], 0),
                  max(min(_bounds[2], self.shape[2]), 0),
                  max(min(_bounds[3], self.shape[1]), 0))
        result = self[:, bounds[1]:bounds[3], bounds[0]:bounds[2]]
        if pads[0] > 0:
            dims = (result.shape[0], result.shape[1], pads[0])
            result = da.concatenate([da.zeros(dims, chunks=dims, dtype=result.dtype),
                                     result], axis=2)
        if pads[2] > 0:
            dims = (result.shape[0], result.shape[1], pads[2])
            result = da.concatenate([result,
                                     da.zeros(dims, chunks=dims, dtype=result.dtype)], axis=2)
        if pads[1] > 0:
            dims = (result.shape[0], pads[1], result.shape[2])
            result = da.concatenate([da.zeros(dims, chunks=dims, dtype=result.dtype),
                                     result], axis=1)
        if pads[3] > 0:
            dims = (result.shape[0], pads[3], result.shape[2])
            result = da.concatenate([result,
                                     da.zeros(dims, chunks=dims, dtype=result.dtype)], axis=1)

        return (result, _bounds[0], _bounds[1]) 
開發者ID:DigitalGlobe,項目名稱:gbdxtools,代碼行數:28,代碼來源:meta.py

示例6: read_bed

# 需要導入模塊: from dask import array [as 別名]
# 或者: from dask.array import concatenate [as 別名]
def read_bed(filepath, nrows, ncols):
    from dask.array import concatenate, from_delayed
    from dask.delayed import delayed

    chunk_size = 1024

    row_start = 0
    col_xs = []
    while row_start < nrows:
        row_end = min(row_start + chunk_size, nrows)
        col_start = 0
        row_xs = []
        while col_start < ncols:
            col_end = min(col_start + chunk_size, ncols)

            x = delayed(_read_bed_chunk)(
                filepath, nrows, ncols, row_start, row_end, col_start, col_end
            )

            shape = (row_end - row_start, col_end - col_start)
            row_xs += [from_delayed(x, shape, float64)]
            col_start = col_end
        col_xs += [concatenate(row_xs, axis=1)]
        row_start = row_end
    X = concatenate(col_xs, axis=0)
    return X 
開發者ID:limix,項目名稱:pandas-plink,代碼行數:28,代碼來源:_bed_read.py

示例7: get_border_lonlats

# 需要導入模塊: from dask import array [as 別名]
# 或者: from dask.array import concatenate [as 別名]
def get_border_lonlats(geo_def):
    """Get the border x- and y-coordinates."""
    if geo_def.proj_dict['proj'] == 'geos':
        lon_b, lat_b = get_geostationary_bounding_box(geo_def, 3600)
    else:
        lons, lats = geo_def.get_boundary_lonlats()
        lon_b = np.concatenate((lons.side1, lons.side2, lons.side3, lons.side4))
        lat_b = np.concatenate((lats.side1, lats.side2, lats.side3, lats.side4))

    return lon_b, lat_b 
開發者ID:pytroll,項目名稱:pyresample,代碼行數:12,代碼來源:__init__.py

示例8: find_concat_dim_facet

# 需要導入模塊: from dask import array [as 別名]
# 或者: from dask.array import concatenate [as 別名]
def find_concat_dim_facet(da, facet, extra_metadata):
    """ In llc grids, find along which horizontal dimension to concatenate
    facet between i, i_g and j, j_g. If the order of the facet is F, concat
    along i or i_g. If order is C, concat along j or j_g. Also return
    horizontal dim not to concatenate

    PARAMETERS
    ----------
    da : xarray.DataArray
        xmitgcm llc data array
    facet : int
        facet number
    extra_metadata : dict
        dict of extra_metadata from get_extra_metadata

    RETURNS
    -------
    concat_dim, nonconcat_dim : str, str
        names of the dimensions for concatenation or not

    """
    order = extra_metadata['facet_orders'][facet]
    if order == 'C':
        possible_concat_dims = ['j', 'j_g']
    elif order == 'F':
        possible_concat_dims = ['i', 'i_g']

    concat_dim = find_concat_dim(da, possible_concat_dims)

    # we also need to other horizontal dimension for vector indexing
    all_dims = list(da.dims)
    # discard face
    all_dims.remove('face')
    # remove the concat_dim to find horizontal non_concat dimension
    all_dims.remove(concat_dim)
    non_concat_dim = all_dims[0]
    return concat_dim, non_concat_dim 
開發者ID:MITgcm,項目名稱:xmitgcm,代碼行數:39,代碼來源:utils.py

示例9: llc_facets_3d_spatial_to_compact

# 需要導入模塊: from dask import array [as 別名]
# 或者: from dask.array import concatenate [as 別名]
def llc_facets_3d_spatial_to_compact(facets, dimname, extra_metadata):
    """ Write in compact form a list of 3d facets

    PARAMETERS
    ----------
    facets : dict
        dict of xarray.dataarrays for the facets
    extra_metadata : dict
        extra_metadata from get_extra_metadata

    RETURNS
    -------
    flatdata : numpy.array
        all the data in vector form
    """

    nz = len(facets['facet0'][dimname])
    nfacets = len(facets)
    flatdata = np.array([])

    for kz in range(nz):
        # rebuild the dict
        tmpdict = {}
        for kfacet in range(nfacets):
            this_facet = facets['facet' + str(kfacet)]
            if this_facet is not None:
                tmpdict['facet' + str(kfacet)] = this_facet.isel(k=kz)
            else:
                tmpdict['facet' + str(kfacet)] = None
        # concatenate all 2d arrays
        compact2d = llc_facets_2d_to_compact(tmpdict, extra_metadata)
        flatdata = np.concatenate([flatdata, compact2d])

    return flatdata 
開發者ID:MITgcm,項目名稱:xmitgcm,代碼行數:36,代碼來源:utils.py

示例10: test_uniform_comprehensions

# 需要導入模塊: from dask import array [as 別名]
# 或者: from dask.array import concatenate [as 別名]
def test_uniform_comprehensions():
    da_func = lambda arr: da_ndf.uniform_filter(arr, 1, origin=0)  # noqa: E731

    np.random.seed(0)

    a = np.random.random((3, 12, 14))
    d = da.from_array(a, chunks=(3, 6, 7))

    l2s = [da_func(d[i]) for i in range(len(d))]
    l2c = [da_func(d[i])[None] for i in range(len(d))]

    dau.assert_eq(np.stack(l2s), da.stack(l2s))
    dau.assert_eq(np.concatenate(l2c), da.concatenate(l2c)) 
開發者ID:dask,項目名稱:dask-image,代碼行數:15,代碼來源:test__smooth.py

示例11: test_order_comprehensions

# 需要導入模塊: from dask import array [as 別名]
# 或者: from dask.array import concatenate [as 別名]
def test_order_comprehensions(da_func, kwargs):
    np.random.seed(0)

    a = np.random.random((3, 12, 14))
    d = da.from_array(a, chunks=(3, 6, 7))

    l2s = [da_func(d[i], **kwargs) for i in range(len(d))]
    l2c = [da_func(d[i], **kwargs)[None] for i in range(len(d))]

    dau.assert_eq(np.stack(l2s), da.stack(l2s))
    dau.assert_eq(np.concatenate(l2c), da.concatenate(l2c)) 
開發者ID:dask,項目名稱:dask-image,代碼行數:13,代碼來源:test__order.py

示例12: test_edge_comprehensions

# 需要導入模塊: from dask import array [as 別名]
# 或者: from dask.array import concatenate [as 別名]
def test_edge_comprehensions(da_func):
    np.random.seed(0)

    a = np.random.random((3, 12, 14))
    d = da.from_array(a, chunks=(3, 6, 7))

    l2s = [da_func(d[i]) for i in range(len(d))]
    l2c = [da_func(d[i])[None] for i in range(len(d))]

    dau.assert_eq(np.stack(l2s), da.stack(l2s))
    dau.assert_eq(np.concatenate(l2c), da.concatenate(l2c)) 
開發者ID:dask,項目名稱:dask-image,代碼行數:13,代碼來源:test__edge.py

示例13: test_generic_filter_comprehensions

# 需要導入模塊: from dask import array [as 別名]
# 或者: from dask.array import concatenate [as 別名]
def test_generic_filter_comprehensions(da_func):
    da_wfunc = lambda arr: da_func(arr, lambda x: x, 1)  # noqa: E731

    np.random.seed(0)

    a = np.random.random((3, 12, 14))
    d = da.from_array(a, chunks=(3, 6, 7))

    l2s = [da_wfunc(d[i]) for i in range(len(d))]
    l2c = [da_wfunc(d[i])[None] for i in range(len(d))]

    dau.assert_eq(np.stack(l2s), da.stack(l2s))
    dau.assert_eq(np.concatenate(l2c), da.concatenate(l2c)) 
開發者ID:dask,項目名稱:dask-image,代碼行數:15,代碼來源:test__generic.py

示例14: test_convolutions_comprehensions

# 需要導入模塊: from dask import array [as 別名]
# 或者: from dask.array import concatenate [as 別名]
def test_convolutions_comprehensions(da_func):
    np.random.seed(0)

    a = np.random.random((3, 12, 14))
    d = da.from_array(a, chunks=(3, 6, 7))

    weights = np.ones((1, 1))

    l2s = [da_func(d[i], weights) for i in range(len(d))]
    l2c = [da_func(d[i], weights)[None] for i in range(len(d))]

    dau.assert_eq(np.stack(l2s), da.stack(l2s))
    dau.assert_eq(np.concatenate(l2c), da.concatenate(l2c)) 
開發者ID:dask,項目名稱:dask-image,代碼行數:15,代碼來源:test__conv.py

示例15: test_laplace_comprehensions

# 需要導入模塊: from dask import array [as 別名]
# 或者: from dask.array import concatenate [as 別名]
def test_laplace_comprehensions():
    np.random.seed(0)

    a = np.random.random((3, 12, 14))
    d = da.from_array(a, chunks=(3, 6, 7))

    l2s = [da_ndf.laplace(d[i]) for i in range(len(d))]
    l2c = [da_ndf.laplace(d[i])[None] for i in range(len(d))]

    dau.assert_eq(np.stack(l2s), da.stack(l2s))
    dau.assert_eq(np.concatenate(l2c), da.concatenate(l2c)) 
開發者ID:dask,項目名稱:dask-image,代碼行數:13,代碼來源:test__diff.py


注:本文中的dask.array.concatenate方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。