當前位置: 首頁>>代碼示例>>Python>>正文


Python cytoolz.compose方法代碼示例

本文整理匯總了Python中cytoolz.compose方法的典型用法代碼示例。如果您正苦於以下問題:Python cytoolz.compose方法的具體用法?Python cytoolz.compose怎麽用?Python cytoolz.compose使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在cytoolz的用法示例。


在下文中一共展示了cytoolz.compose方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: all_of

# 需要導入模塊: import cytoolz [as 別名]
# 或者: from cytoolz import compose [as 別名]
def all_of(inners, arg):
    """All of the inner valudators must pass.

    The order of inner validators matters.

    Parameters
    ----------
    inners : List[validator]
      Functions are applied from right to left so allof([rule1, rule2], arg) is
      the same as rule1(rule2(arg)).
    arg : Any
      Value to be validated.

    Returns
    -------
    arg : Any
      Value maybe coerced by inner validators to the appropiate types
    """
    return compose(*inners)(arg) 
開發者ID:ibis-project,項目名稱:ibis,代碼行數:21,代碼來源:rules.py

示例2: label

# 需要導入模塊: import cytoolz [as 別名]
# 或者: from cytoolz import compose [as 別名]
def label(split):
    start = time()
    print('start processing {} split...'.format(split))
    data_dir = join(DATA_DIR, split)
    n_data = count_data(data_dir)
    for i in range(n_data):
        print('processing {}/{} ({:.2f}%%)\r'.format(i, n_data, 100*i/n_data),
              end='')
        with open(join(data_dir, '{}.json'.format(i))) as f:
            data = json.loads(f.read())
        tokenize = compose(list, _split_words)
        art_sents = tokenize(data['article'])
        abs_sents = tokenize(data['abstract'])
        extracted, scores = get_extract_label(art_sents, abs_sents)
        data['extracted'] = extracted
        data['score'] = scores
        with open(join(data_dir, '{}.json'.format(i)), 'w') as f:
            json.dump(data, f, indent=4)
    print('finished in {}'.format(timedelta(seconds=time()-start))) 
開發者ID:ChenRocks,項目名稱:fast_abs_rl,代碼行數:21,代碼來源:make_extraction_labels.py

示例3: label

# 需要導入模塊: import cytoolz [as 別名]
# 或者: from cytoolz import compose [as 別名]
def label(data_dir, split):
    start = time()
    print('start processing {} split...'.format(split))
    data_dir = os.path.join(data_dir, split)
    n_data = count_data(data_dir)
    for i in range(n_data):
        print('processing {}/{} ({:.2f}%%)\r'.format(i, n_data, 100*i/n_data), end='')
        with open(os.path.join(data_dir, '{}.json'.format(i))) as f:
            data = json.loads(f.read())
        tokenize = compose(list, _split_words)
        art_sents = tokenize(data['article'])
        abs_sents = tokenize(data['abstract'])
        extracted, scores = get_extract_label(art_sents, abs_sents)
        data['extracted'] = extracted
        data['score'] = scores
        with open(os.path.join(data_dir, '{}.json'.format(i)), 'w') as f:
            json.dump(data, f, indent=4)
    print('finished in {}'.format(timedelta(seconds=time()-start))) 
開發者ID:iwangjian,項目名稱:ByteCup2018,代碼行數:20,代碼來源:make_extraction_labels.py

示例4: build_batchers

# 需要導入模塊: import cytoolz [as 別名]
# 或者: from cytoolz import compose [as 別名]
def build_batchers(word2id, data_dir, cuda, debug):
    prepro = prepro_fn(args.max_art, args.max_abs)

    def sort_key(sample):
        src, target = sample
        return (len(target), len(src))

    batchify = compose(batchify_fn_copy(PAD, START, END, cuda=cuda),
                       convert_batch_copy(UNK, word2id))

    train_loader = DataLoader(
        MatchDataset('train', data_dir), batch_size=BUCKET_SIZE,
        shuffle=not debug,
        num_workers=4 if cuda and not debug else 0,
        collate_fn=coll_fn)
    val_loader = DataLoader(
        MatchDataset('val', data_dir), batch_size=BUCKET_SIZE,
        shuffle=False, num_workers=4 if cuda and not debug else 0,
        collate_fn=coll_fn
    )
    train_batcher = BucketedGenerater(train_loader, prepro, sort_key, batchify,
                                      single_run=False, fork=False)
    val_batcher = BucketedGenerater(val_loader, prepro, sort_key, batchify,
                                    single_run=True, fork=False)
    return train_batcher, val_batcher 
開發者ID:iwangjian,項目名稱:ByteCup2018,代碼行數:27,代碼來源:train_abstractor.py

示例5: process

# 需要導入模塊: import cytoolz [as 別名]
# 或者: from cytoolz import compose [as 別名]
def process(split, i):
    data_dir = join(DATA_DIR, split)
    with open(join(data_dir, '{}.json'.format(i))) as f:
        data = json.loads(f.read())
    tokenize = compose(list, _split_words)
    art_sents = tokenize(data['article'])
    abs_sents = tokenize(data['abstract'])
    if art_sents and abs_sents: # some data contains empty article/abstract
        extracted, scores = get_extract_label(art_sents, abs_sents)
    else:
        extracted, scores = [], []
    data['extracted'] = extracted
    data['score'] = scores
    with open(join(data_dir, '{}.json'.format(i)), 'w') as f:
        json.dump(data, f, indent=4) 
開發者ID:ChenRocks,項目名稱:fast_abs_rl,代碼行數:17,代碼來源:make_extraction_labels.py

示例6: build_batchers

# 需要導入模塊: import cytoolz [as 別名]
# 或者: from cytoolz import compose [as 別名]
def build_batchers(net_type, word2id, cuda, debug):
    assert net_type in ['ff', 'rnn']
    prepro = prepro_fn_extract(args.max_word, args.max_sent)
    def sort_key(sample):
        src_sents, _ = sample
        return len(src_sents)
    batchify_fn = (batchify_fn_extract_ff if net_type == 'ff'
                   else batchify_fn_extract_ptr)
    convert_batch = (convert_batch_extract_ff if net_type == 'ff'
                     else convert_batch_extract_ptr)
    batchify = compose(batchify_fn(PAD, cuda=cuda),
                       convert_batch(UNK, word2id))

    train_loader = DataLoader(
        ExtractDataset('train'), batch_size=BUCKET_SIZE,
        shuffle=not debug,
        num_workers=4 if cuda and not debug else 0,
        collate_fn=coll_fn_extract
    )
    train_batcher = BucketedGenerater(train_loader, prepro, sort_key, batchify,
                                      single_run=False, fork=not debug)

    val_loader = DataLoader(
        ExtractDataset('val'), batch_size=BUCKET_SIZE,
        shuffle=False, num_workers=4 if cuda and not debug else 0,
        collate_fn=coll_fn_extract
    )
    val_batcher = BucketedGenerater(val_loader, prepro, sort_key, batchify,
                                    single_run=True, fork=not debug)
    return train_batcher, val_batcher 
開發者ID:ChenRocks,項目名稱:fast_abs_rl,代碼行數:32,代碼來源:train_extractor_ml.py

示例7: build_batchers

# 需要導入模塊: import cytoolz [as 別名]
# 或者: from cytoolz import compose [as 別名]
def build_batchers(word2id, cuda, debug):
    prepro = prepro_fn(args.max_art, args.max_abs)
    def sort_key(sample):
        src, target = sample
        return (len(target), len(src))
    batchify = compose(
        batchify_fn_copy(PAD, START, END, cuda=cuda),
        convert_batch_copy(UNK, word2id)
    )

    train_loader = DataLoader(
        MatchDataset('train'), batch_size=BUCKET_SIZE,
        shuffle=not debug,
        num_workers=4 if cuda and not debug else 0,
        collate_fn=coll_fn
    )
    train_batcher = BucketedGenerater(train_loader, prepro, sort_key, batchify,
                                      single_run=False, fork=not debug)

    val_loader = DataLoader(
        MatchDataset('val'), batch_size=BUCKET_SIZE,
        shuffle=False, num_workers=4 if cuda and not debug else 0,
        collate_fn=coll_fn
    )
    val_batcher = BucketedGenerater(val_loader, prepro, sort_key, batchify,
                                    single_run=True, fork=not debug)
    return train_batcher, val_batcher 
開發者ID:ChenRocks,項目名稱:fast_abs_rl,代碼行數:29,代碼來源:train_abstractor.py

示例8: process

# 需要導入模塊: import cytoolz [as 別名]
# 或者: from cytoolz import compose [as 別名]
def process(data_dir, split, i):
    data_dir = os.path.join(data_dir, split)
    with open(os.path.join(data_dir, '{}.json'.format(i))) as f:
        data = json.loads(f.read())
    tokenize = compose(list, _split_words)
    art_sents = tokenize(data['article'])
    abs_sents = tokenize(data['abstract'])
    if art_sents and abs_sents: # some data contains empty article/abstract
        extracted, scores = get_extract_label(art_sents, abs_sents)
    else:
        extracted, scores = [], []
    data['extracted'] = extracted
    data['score'] = scores
    with open(os.path.join(data_dir, '{}.json'.format(i)), 'w') as f:
        json.dump(data, f, indent=4) 
開發者ID:iwangjian,項目名稱:ByteCup2018,代碼行數:17,代碼來源:make_extraction_labels.py

示例9: build_batchers

# 需要導入模塊: import cytoolz [as 別名]
# 或者: from cytoolz import compose [as 別名]
def build_batchers(data_dir, net_type, word2id, cuda, debug):
    assert net_type in ['ff', 'rnn']
    prepro = prepro_fn_extract(args.max_word, args.max_sent)

    def sort_key(sample):
        src_sents, _ = sample
        return len(src_sents)

    batchify_fn = (batchify_fn_extract_ff if net_type == 'ff'
                   else batchify_fn_extract_ptr)
    convert_batch = (convert_batch_extract_ff if net_type == 'ff'
                     else convert_batch_extract_ptr)
    batchify = compose(batchify_fn(PAD, cuda=cuda), convert_batch(UNK, word2id))

    train_loader = DataLoader(
        ExtractDataset('train', data_dir), batch_size=BUCKET_SIZE,
        shuffle=not debug,
        num_workers=4 if cuda and not debug else 0,
        collate_fn=coll_fn_extract)
    val_loader = DataLoader(
        ExtractDataset('val', data_dir), batch_size=BUCKET_SIZE,
        shuffle=False, num_workers=4 if cuda and not debug else 0,
        collate_fn=coll_fn_extract)

    train_batcher = BucketedGenerater(train_loader, prepro, sort_key, batchify,
                                      single_run=False, fork=False)
    val_batcher = BucketedGenerater(val_loader, prepro, sort_key, batchify,
                                    single_run=True, fork=False)
    return train_batcher, val_batcher 
開發者ID:iwangjian,項目名稱:ByteCup2018,代碼行數:31,代碼來源:train_extractor.py

示例10: test_extract_links

# 需要導入模塊: import cytoolz [as 別名]
# 或者: from cytoolz import compose [as 別名]
def test_extract_links():
    first_link = compose(tuple, next, iter, extract_links)

    assert_equal(first_link("[[foo|bar]]"), ("Foo", "bar"))
    assert_equal(first_link("[[foo]]"), ("Foo", "foo"))
    assert_equal(first_link("[[File:picture!]] [[foo]]"), ("Foo", "foo"))
    assert_equal(first_link("[[foo]]bar."), ("Foo", "foobar"))
    assert_equal(first_link("[[baz|foobar]];"), ("Baz", "foobar"))
    assert_equal(first_link("[[baz#quux]]"), ("Baz", "baz#quux"))
    assert_equal(first_link("[[baz#quux|bla]]"), ("Baz", "bla"))
    assert_equal(first_link("[[FOO_BAR|foo bar]]"), ("FOO BAR", "foo bar"))

    # Links like these commonly occur in nlwiki (and presumably dewiki and
    # other compounding languages):
    assert_equal(first_link("foo[[baz|bar]]"), ("Baz", "foobar"))

    # MediaWiki only considers alphabetic characters outside [[]] part of the
    # anchor.
    assert_equal(first_link("foo-[[bar]]"), ("Bar", "bar"))
    assert_equal(first_link("[[bar]]/baz"), ("Bar", "bar"))
    # XXX The following are broken. They do occur in the wild, e.g.,
    # -18[[Celsius|°C]] and 700[[Megabyte|MB]]-cd (found in nlwiki dump).
    # assert_equal(first_link("[[bar]]0"), ("Bar", "bar"))
    # assert_equal(first_link("[[bar]]_"), ("Bar", "bar"))

    # We're not interested in section links
    assert_equal(first_link("[[#Some section|elsewhere]] [[other_article]]"),
                 ("Other article", "other_article"))

    # This construct appears in enwiki for chemical formulae etc., but also in
    # nlwiki (and dewiki?) for more general compound nouns. The current
    # handling may not be exactly what we want; any fix should update the test
    # accordingly.
    assert_equal(list(extract_links("[[Lithium|Li]][[Fluorine|F]]")),
                 [("Lithium", "Li"), ("Fluorine", "F")])
    assert_equal(list(extract_links("[[tera-|tera]][[becquerel]]s")),
                 [("Tera-", "tera"), ("Becquerel", "becquerels")])
    assert_equal(list(extract_links("""[[Lord's
        prayer]]
        [[Dismissal 
        (cricket)|dismissal]] [[Badass|Chuck 
        Norris]]""")),
                 [("Lord's prayer", "Lord's prayer"),
                 ("Dismissal (cricket)", "dismissal"),
                 ("Badass", "Chuck Norris")])

    assert_equal(list(extract_links("[[C. Stephen Evans | Evans, C. Stephen]]")),
                 [('C. Stephen Evans', 'Evans, C. Stephen')]) 
開發者ID:semanticize,項目名稱:semanticizest,代碼行數:50,代碼來源:test_wikidump_parser.py


注:本文中的cytoolz.compose方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。