本文整理匯總了Python中cvxpy.sum方法的典型用法代碼示例。如果您正苦於以下問題:Python cvxpy.sum方法的具體用法?Python cvxpy.sum怎麽用?Python cvxpy.sum使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類cvxpy
的用法示例。
在下文中一共展示了cvxpy.sum方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_boolean
# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import sum [as 別名]
def test_boolean(self):
x = Variable((5, 4))
y = Boolean(5, 4)
p = Problem(Minimize(sum(1-x) + sum(x)), [x == y])
result = p.solve(method="NC-ADMM", solver=CVXOPT)
self.assertAlmostEqual(result[0], 20)
for i in range(x.shape[0]):
for j in range(x.shape[1]):
v = x.value[i, j]
self.assertAlmostEqual(v*(1-v), 0)
x = Variable()
p = Problem(Minimize(sum(1-x) + sum(x)), [x == Boolean(5,4)[0,0]])
result = p.solve(method="NC-ADMM", solver=CVXOPT)
self.assertAlmostEqual(result[0], 1)
self.assertAlmostEqual(x.value*(1-x.value), 0)
# Test choose variable.
示例2: get_objective
# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import sum [as 別名]
def get_objective(self, X_v, U_v, X_last_p, U_last_p):
"""
Get model specific objective to be minimized.
:param X_v: cvx variable for current states
:param U_v: cvx variable for current inputs
:param X_last_p: cvx parameter for last states
:param U_last_p: cvx parameter for last inputs
:return: A cvx objective function.
"""
slack = 0
for j in range(len(self.obstacles)):
slack += cvx.sum(self.s_prime[j])
objective = cvx.Minimize(1e5 * slack)
# objective += cvx.Minimize(cvx.sum(cvx.square(U_v)))
return objective
示例3: get_sudoku_matrix
# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import sum [as 別名]
def get_sudoku_matrix(n):
X = np.array([[cp.Variable(n**2) for i in range(n**2)] for j in range(n**2)])
cons = ([x >= 0 for row in X for x in row] +
[cp.sum(x) == 1 for row in X for x in row] +
[sum(row) == np.ones(n**2) for row in X] +
[sum([row[i] for row in X]) == np.ones(n**2) for i in range(n**2)] +
[sum([sum(row[i:i+n]) for row in X[j:j+n]]) == np.ones(n**2) for i in range(0,n**2,n) for j in range(0, n**2, n)])
f = sum([cp.sum(x) for row in X for x in row])
prob = cp.Problem(cp.Minimize(f), cons)
A = np.asarray(prob.get_problem_data(cp.ECOS)[0]["A"].todense())
A0 = [A[0]]
rank = 1
for i in range(1,A.shape[0]):
if np.linalg.matrix_rank(A0+[A[i]], tol=1e-12) > rank:
A0.append(A[i])
rank += 1
return np.array(A0)
示例4: softmax
# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import sum [as 別名]
def softmax():
# print(f'--- {sys._getframe().f_code.co_name} ---')
print('softmax')
npr.seed(0)
d = 4
_x = cp.Parameter((d, 1))
_y = cp.Variable(d)
obj = cp.Minimize(-_x.T * _y - cp.sum(cp.entr(_y)))
cons = [sum(_y) == 1.]
prob = cp.Problem(obj, cons)
_x.value = npr.randn(d, 1)
prob.solve(solver=cp.SCS)
print(_y.value)
示例5: running_example
# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import sum [as 別名]
def running_example():
print("running example")
m = 20
n = 10
x = cp.Variable((n, 1))
F = cp.Parameter((m, n))
g = cp.Parameter((m, 1))
lambd = cp.Parameter((1, 1), nonneg=True)
objective_fn = cp.norm(F @ x - g) + lambd * cp.norm(x)
constraints = [x >= 0]
problem = cp.Problem(cp.Minimize(objective_fn), constraints)
assert problem.is_dcp()
assert problem.is_dpp()
print("is_dpp: ", problem.is_dpp())
F_t = torch.randn(m, n, requires_grad=True)
g_t = torch.randn(m, 1, requires_grad=True)
lambd_t = torch.rand(1, 1, requires_grad=True)
layer = CvxpyLayer(problem, parameters=[F, g, lambd], variables=[x])
x_star, = layer(F_t, g_t, lambd_t)
x_star.sum().backward()
print("F_t grad: ", F_t.grad)
print("g_t grad: ", g_t.grad)
示例6: test_lml
# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import sum [as 別名]
def test_lml(self):
tf.random.set_seed(0)
k = 2
x = cp.Parameter(4)
y = cp.Variable(4)
obj = -x * y - cp.sum(cp.entr(y)) - cp.sum(cp.entr(1. - y))
cons = [cp.sum(y) == k]
problem = cp.Problem(cp.Minimize(obj), cons)
lml = CvxpyLayer(problem, [x], [y])
x_tf = tf.Variable([1., -1., -1., -1.], dtype=tf.float64)
with tf.GradientTape() as tape:
y_opt = lml(x_tf, solver_args={'eps': 1e-10})[0]
loss = -tf.math.log(y_opt[1])
def f():
problem.solve(solver=cp.SCS, eps=1e-10)
return -np.log(y.value[1])
grad = tape.gradient(loss, [x_tf])
numgrad = numerical_grad(f, [x], [x_tf])
np.testing.assert_almost_equal(grad, numgrad, decimal=3)
示例7: test_example
# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import sum [as 別名]
def test_example(self):
n, m = 2, 3
x = cp.Variable(n)
A = cp.Parameter((m, n))
b = cp.Parameter(m)
constraints = [x >= 0]
objective = cp.Minimize(0.5 * cp.pnorm(A @ x - b, p=1))
problem = cp.Problem(objective, constraints)
assert problem.is_dpp()
cvxpylayer = CvxpyLayer(problem, parameters=[A, b], variables=[x])
A_tch = torch.randn(m, n, requires_grad=True)
b_tch = torch.randn(m, requires_grad=True)
# solve the problem
solution, = cvxpylayer(A_tch, b_tch)
# compute the gradient of the sum of the solution with respect to A, b
solution.sum().backward()
示例8: __init__
# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import sum [as 別名]
def __init__(self, m, k, n, complex=False):
if not cvx_available:
raise RuntimeError('Cannot initialize when cvxpy is not available.')
# Initialize parameters and variables
A = cvx.Parameter((m, k), complex=complex)
B = cvx.Parameter((m, n), complex=complex)
l = cvx.Parameter(nonneg=True)
X = cvx.Variable((k, n), complex=complex)
# Create the problem
# CVXPY issue:
# cvx.norm does not work if axis is not 0.
# Workaround:
# use cvx.norm(X.T, 2, axis=0) instead of cvx.norm(X, 2, axis=1)
obj_func = 0.5 * cvx.norm(cvx.matmul(A, X) - B, 'fro')**2 + \
l * cvx.sum(cvx.norm(X.T, 2, axis=0))
self._problem = cvx.Problem(cvx.Minimize(obj_func))
self._A = A
self._B = B
self._l = l
self._X = X
示例9: fit
# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import sum [as 別名]
def fit(self, X, y):
"""
Fit the model using X, y as training data.
:param X: array-like, shape=(n_columns, n_samples, ) training data.
:param y: array-like, shape=(n_samples, ) training data.
:return: Returns an instance of self.
"""
X, y = check_X_y(X, y, estimator=self, dtype=FLOAT_DTYPES)
# Construct the problem.
betas = cp.Variable(X.shape[1])
objective = cp.Minimize(cp.sum_squares(X * betas - y))
constraints = [sum(betas) == 1]
if self.non_negative:
constraints.append(0 <= betas)
# Solve the problem.
prob = cp.Problem(objective, constraints)
prob.solve()
self.coefs_ = betas.value
return self
示例10: _generate_cvxpy_problem
# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import sum [as 別名]
def _generate_cvxpy_problem(self):
'''
Generate QP problem
'''
# Construct the problem
# minimize 1/2 z.T * z + np.ones(m).T * (r + s)
# subject to Ax - b - z = r - s
# r >= 0
# s >= 0
# The problem reformulation follows from Eq. (24) of the following paper:
# https://doi.org/10.1109/34.877518
x = cvxpy.Variable(self.n)
z = cvxpy.Variable(self.m)
r = cvxpy.Variable(self.m)
s = cvxpy.Variable(self.m)
objective = cvxpy.Minimize(.5 * cvxpy.sum_squares(z) + cvxpy.sum(r + s))
constraints = [self.Ad@x - self.bd - z == r - s,
r >= 0, s >= 0]
problem = cvxpy.Problem(objective, constraints)
return problem, (x, z, r, s)
示例11: _generate_cvxpy_problem
# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import sum [as 別名]
def _generate_cvxpy_problem(self):
'''
Generate QP problem
'''
# Construct the problem
# minimize 1/2 z.T * z + np.ones(m).T * (r + s)
# subject to Ax - b - z = r - s
# r >= 0
# s >= 0
# The problem reformulation follows from Eq. (24) of the following paper:
# https://doi.org/10.1109/34.877518
x = cvxpy.Variable(self.n)
z = cvxpy.Variable(self.m)
r = cvxpy.Variable(self.m)
s = cvxpy.Variable(self.m)
objective = cvxpy.Minimize(.5 * cvxpy.sum_squares(z) + cvxpy.sum(r + s))
constraints = [self.Ad@x - self.bd - z == r - s,
r >= 0, s >= 0]
problem = cvxpy.Problem(objective, constraints)
return problem, (x, z, r, s)
示例12: price
# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import sum [as 別名]
def price(self):
"""Price associated with this net."""
return self.constraints[0].dual_value
#print([c.dual_value for c in self.constraints])
# raise
# if (len(self.constraints) == 1 and
# np.size(self.constraints[0].dual_value)) == 1:
# return self.constraints[0].dual_value
# TODO(enzo) hardcoded 1/K probability
# return np.sum(constr.dual_value
# for constr in self.constraints)
# if self.num_scenarios > 1:
# return np.matrix(np.sum([constr.dual_value[0]
# for constr in self.constraints], 0))
# return np.hstack(constr.dual_value.reshape(-1, 1)
# for constr in self.constraints)
示例13: __init__
# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import sum [as 別名]
def __init__(self, g: DFGraph, budget: int):
self.budget = budget
self.g = g
self.T = self.g.size
self.R = cp.Variable((self.T, self.T), name="R")
self.S = cp.Variable((self.T, self.T), name="S")
self.Free_E = cp.Variable((self.T, len(self.g.edge_list)), name="FREE_E")
self.U = cp.Variable((self.T, self.T), name="U")
cpu_cost_vec = np.asarray([self.g.cost_cpu[i] for i in range(self.T)])[np.newaxis, :].T
assert cpu_cost_vec.shape == (self.T, 1)
objective = cp.Minimize(cp.sum(self.R @ cpu_cost_vec))
constraints = self.make_constraints(budget)
self.problem = cp.Problem(objective, constraints)
self.num_vars = self.problem.size_metrics.num_scalar_variables
self.num_constraints = self.problem.size_metrics.num_scalar_eq_constr + self.problem.size_metrics.num_scalar_leq_constr
示例14: __init__
# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import sum [as 別名]
def __init__(self, rows, cols, col_sum, *args, **kwargs):
assert rows >= cols
assert rows == sum(col_sum)
super(GroupAssign, self).__init__(rows=rows, cols=cols, *args, **kwargs)
self.col_sum = col_sum
示例15: init_z
# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import sum [as 別名]
def init_z(self, random):
if random:
result = np.zeros(self.shape)
num_entries = self.shape[0]*self.shape[1]
weights = np.random.uniform(size=num_entries)
weights /= weights.sum()
for k in range(num_entries):
assignment = np.random.permutation(self.shape[0])
for j in range(self.shape[1]):
result[assignment[j], j] += weights[k]
self.z.value = result
else:
self.z.value = np.ones(self.shape)/self.shape[1]
# Compute projection with maximal weighted matching.