當前位置: 首頁>>代碼示例>>Python>>正文


Python cvxpy.square方法代碼示例

本文整理匯總了Python中cvxpy.square方法的典型用法代碼示例。如果您正苦於以下問題:Python cvxpy.square方法的具體用法?Python cvxpy.square怎麽用?Python cvxpy.square使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在cvxpy的用法示例。


在下文中一共展示了cvxpy.square方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_objective

# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import square [as 別名]
def get_objective(self, X_v, U_v, X_last_p, U_last_p):
        """
        Get model specific objective to be minimized.

        :param X_v: cvx variable for current states
        :param U_v: cvx variable for current inputs
        :param X_last_p: cvx parameter for last states
        :param U_last_p: cvx parameter for last inputs
        :return: A cvx objective function.
        """

        slack = 0
        for j in range(len(self.obstacles)):
            slack += cvx.sum(self.s_prime[j])

        objective = cvx.Minimize(1e5 * slack)
        # objective += cvx.Minimize(cvx.sum(cvx.square(U_v)))
        return objective 
開發者ID:EmbersArc,項目名稱:SCvx,代碼行數:20,代碼來源:diffdrive_2d.py

示例2: newsvendor_opt

# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import square [as 別名]
def newsvendor_opt(params, py):
    z = cp.Variable(1)
    d = params['d']
    f = (params['c_lin'] * z + 0.5 * params['c_quad'] * cp.square(z) +
        py.T * (params['b_lin'] * cp.pos(d-z) + 
                0.5 * params['b_quad'] * cp.square(cp.pos(d-z)) +
                params['h_lin'] * cp.pos(z-d) +
                0.5 * params['h_quad'] * cp.square(cp.pos(z-d)) ))
    fval = cp.Problem(cp.Minimize(f), [z >= 0]).solve()
    return z.value, fval

# Inventory ordering cost given demand realization 
開發者ID:locuslab,項目名稱:e2e-model-learning,代碼行數:14,代碼來源:mle.py

示例3: block_solve_cvx

# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import square [as 別名]
def block_solve_cvx(r_j, A_j, a_1_j, a_2_j, m, b_j_init, verbose=False):
    # pylint: disable=unused-argument
    """Solve the gelcd optimization problem for a single block with cvx.

    b_j_init and verbose are ignored. b_j_init because cvx doesn't support it.
    verbose because it doesn't go together with tqdm.
    """
    # Convert everything to numpy.
    device = A_j.device
    dtype = A_j.dtype
    r_j = r_j.cpu().numpy()
    A_j = A_j.cpu().numpy()

    # Create the b_j variable.
    b_j = cvx.Variable(A_j.shape[1])

    # Form the objective.
    q_j = r_j - A_j * b_j
    obj_fun = cvx.square(cvx.norm(q_j)) / (2.0 * m)
    obj_fun += a_1_j * cvx.norm(b_j) + (a_2_j / 2.0) * cvx.square(cvx.norm(b_j))

    # Build the optimization problem.
    obj = cvx.Minimize(obj_fun)
    problem = cvx.Problem(obj, constraints=None)

    problem.solve(solver="CVXOPT", verbose=False)
    b_j = np.asarray(b_j.value)
    return torch.from_numpy(b_j).to(device, dtype) 
開發者ID:jayanthkoushik,項目名稱:torch-gel,代碼行數:30,代碼來源:test_gel.py

示例4: cost

# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import square [as 別名]
def cost(self):
        p = self.terminals[0].power_var
        return self.alpha * cvx.square(p) - self.beta * p + self.gamma 
開發者ID:cvxgrp,項目名稱:cvxpower,代碼行數:5,代碼來源:devices.py

示例5: constraints

# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import square [as 別名]
def constraints(self):
        p1 = self.terminals[0].power_var
        p2 = self.terminals[1].power_var

        constrs = []
        if self.alpha > 0:
            constrs += [p1 + p2 >= self.alpha * cvx.square((p1 - p2) / 2)]
            if self.power_max is not None:
                constrs += [2 * self.alpha * self.power_max**2 >= p1 + p2]
        else:
            constrs += [p1 + p2 == 0]
            if self.power_max is not None:
                constrs += [cvx.abs((p1 - p2) / 2) <= self.power_max]

        return constrs 
開發者ID:cvxgrp,項目名稱:cvxpower,代碼行數:17,代碼來源:devices.py

示例6: gel_solve_cvx

# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import square [as 別名]
def gel_solve_cvx(As, y, l_1, l_2, ns):
    """Solve a group elastic net problem with cvx.

    Arguments:
        As: list of tensors.
        y: tensor.
        l_1, l_2: floats.
        ns: iterable.
    """
    # Convert everything to numpy
    dtype = As[0].dtype
    As = [A_j.cpu().numpy() for A_j in As]
    y = y.cpu().numpy()
    ns = np.array([int(n) for n in ns])

    # Create the b variables.
    b_0 = cvx.Variable()
    bs = []
    for _, n_j in zip(As, ns):
        bs.append(cvx.Variable(n_j))

    # Form g(b).
    Ab = sum(A_j * b_j for A_j, b_j in zip(As, bs))
    m = As[0].shape[0]
    g_b = cvx.square(cvx.norm(y - b_0 - Ab)) / (2 * m)

    # Form h(b).
    h_b = sum(
        np.sqrt(n_j) * (l_1 * cvx.norm(b_j) + l_2 * cvx.square(cvx.norm(b_j)))
        for n_j, b_j in zip(ns, bs)
    )

    # Build the optimization problem.
    obj = cvx.Minimize(g_b + h_b)
    problem = cvx.Problem(obj, constraints=None)

    problem.solve(solver="CVXOPT")

    b_0 = b_0.value.item()
    # Form B as returned by gel_solve.
    p = len(As)
    B = torch.zeros(p, int(max(ns)), dtype=dtype)
    for j in range(p):
        b_j = np.asarray(bs[j].value)
        B[j, : ns[j]] = torch.from_numpy(b_j)

    return b_0, B 
開發者ID:jayanthkoushik,項目名稱:torch-gel,代碼行數:49,代碼來源:test_gel.py


注:本文中的cvxpy.square方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。