本文整理匯總了Python中cvxpy.quad_form方法的典型用法代碼示例。如果您正苦於以下問題:Python cvxpy.quad_form方法的具體用法?Python cvxpy.quad_form怎麽用?Python cvxpy.quad_form使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類cvxpy
的用法示例。
在下文中一共展示了cvxpy.quad_form方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _generate_cvxpy_problem
# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import quad_form [as 別名]
def _generate_cvxpy_problem(self):
'''
Generate QP problem
'''
n = self.n
m = self.m
x = cvxpy.Variable(n)
t = cvxpy.Variable(m)
objective = cvxpy.Minimize(.5 * cvxpy.quad_form(x, spa.eye(n))
+ .5 * self.gamma * np.ones(m) * t)
constraints = [t >= spa.diags(self.b_svm).dot(self.A_svm) * x + 1,
t >= 0]
problem = cvxpy.Problem(objective, constraints)
return problem, (x, t)
示例2: _generate_cvxpy_problem
# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import quad_form [as 別名]
def _generate_cvxpy_problem(self):
'''
Generate QP problem
'''
x = cvxpy.Variable(self.n)
y = cvxpy.Variable(self.k)
# Create parameters m
mu = cvxpy.Parameter(self.n)
mu.value = self.mu
objective = cvxpy.Minimize(cvxpy.quad_form(x, self.D) +
cvxpy.quad_form(y, spa.eye(self.k)) +
- 1 / self.gamma * (mu.T * x))
constraints = [np.ones(self.n) * x == 1,
self.F.T * x == y,
0 <= x, x <= 1]
problem = cvxpy.Problem(objective, constraints)
return problem, mu
示例3: eval_cvx
# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import quad_form [as 別名]
def eval_cvx(self, x):
return cvx.quad_form(x, self.P) + self.q.T*x + self.r
示例4: forward_single_np
# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import quad_form [as 別名]
def forward_single_np(Q, p, G, h, A, b):
nz, neq, nineq = p.shape[0], A.shape[0] if A is not None else 0, G.shape[0]
z_ = cp.Variable(nz)
obj = cp.Minimize(0.5 * cp.quad_form(z_, Q) + p.T * z_)
eqCon = A * z_ == b if neq > 0 else None
if nineq > 0:
slacks = cp.Variable(nineq)
ineqCon = G * z_ + slacks == h
slacksCon = slacks >= 0
else:
ineqCon = slacks = slacksCon = None
cons = [x for x in [eqCon, ineqCon, slacksCon] if x is not None]
prob = cp.Problem(obj, cons)
prob.solve() # solver=cp.SCS, max_iters=5000, verbose=False)
# prob.solve(solver=cp.SCS, max_iters=10000, verbose=True)
assert('optimal' in prob.status)
zhat = np.array(z_.value).ravel()
nu = np.array(eqCon.dual_value).ravel() if eqCon is not None else None
if ineqCon is not None:
lam = np.array(ineqCon.dual_value).ravel()
slacks = np.array(slacks.value).ravel()
else:
lam = slacks = None
return prob.value, zhat, nu, lam, slacks
示例5: mpc_control
# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import quad_form [as 別名]
def mpc_control(x0):
x = cvxpy.Variable((nx, T + 1))
u = cvxpy.Variable((nu, T))
A, B = get_model_matrix()
cost = 0.0
constr = []
for t in range(T):
cost += cvxpy.quad_form(x[:, t + 1], Q)
cost += cvxpy.quad_form(u[:, t], R)
constr += [x[:, t + 1] == A * x[:, t] + B * u[:, t]]
# print(x0)
constr += [x[:, 0] == x0[:, 0]]
prob = cvxpy.Problem(cvxpy.Minimize(cost), constr)
start = time.time()
prob.solve(verbose=False)
elapsed_time = time.time() - start
print("calc time:{0} [sec]".format(elapsed_time))
if prob.status == cvxpy.OPTIMAL:
ox = get_nparray_from_matrix(x.value[0, :])
dx = get_nparray_from_matrix(x.value[1, :])
theta = get_nparray_from_matrix(x.value[2, :])
dtheta = get_nparray_from_matrix(x.value[3, :])
ou = get_nparray_from_matrix(u.value[0, :])
return ox, dx, theta, dtheta, ou
示例6: use_modeling_tool
# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import quad_form [as 別名]
def use_modeling_tool(A, B, N, Q, R, P, x0, umax=None, umin=None, xmin=None, xmax=None):
"""
solve MPC with modeling tool for test
"""
(nx, nu) = B.shape
# mpc calculation
x = cvxpy.Variable((nx, N + 1))
u = cvxpy.Variable((nu, N))
costlist = 0.0
constrlist = []
for t in range(N):
costlist += 0.5 * cvxpy.quad_form(x[:, t], Q)
costlist += 0.5 * cvxpy.quad_form(u[:, t], R)
constrlist += [x[:, t + 1] == A * x[:, t] + B * u[:, t]]
if xmin is not None:
constrlist += [x[:, t] >= xmin[:, 0]]
if xmax is not None:
constrlist += [x[:, t] <= xmax[:, 0]]
costlist += 0.5 * cvxpy.quad_form(x[:, N], P) # terminal cost
if xmin is not None:
constrlist += [x[:, N] >= xmin[:, 0]]
if xmax is not None:
constrlist += [x[:, N] <= xmax[:, 0]]
constrlist += [x[:, 0] == x0[:, 0]] # inital state constraints
if umax is not None:
constrlist += [u <= umax] # input constraints
if umin is not None:
constrlist += [u >= umin] # input constraints
prob = cvxpy.Problem(cvxpy.Minimize(costlist), constrlist)
prob.solve(verbose=True)
return x.value, u.value
示例7: full_qp
# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import quad_form [as 別名]
def full_qp():
# print(f'--- {sys._getframe().f_code.co_name} ---')
print('full qp')
npr.seed(0)
nx, ncon_eq, ncon_ineq = 5, 2, 3
Q = cp.Parameter((nx, nx))
p = cp.Parameter((nx, 1))
A = cp.Parameter((ncon_eq, nx))
b = cp.Parameter(ncon_eq)
G = cp.Parameter((ncon_ineq, nx))
h = cp.Parameter(ncon_ineq)
x = cp.Variable(nx)
# obj = cp.Minimize(0.5*cp.quad_form(x, Q) + p.T * x)
obj = cp.Minimize(0.5 * cp.sum_squares(Q@x) + p.T * x)
cons = [A * x == b, G * x <= h]
prob = cp.Problem(obj, cons)
x0 = npr.randn(nx)
s0 = npr.randn(ncon_ineq)
G.value = npr.randn(ncon_ineq, nx)
h.value = G.value.dot(x0) + s0
A.value = npr.randn(ncon_eq, nx)
b.value = A.value.dot(x0)
L = npr.randn(nx, nx)
Q.value = L.T # L.dot(L.T)
p.value = npr.randn(nx, 1)
prob.solve(solver=cp.SCS)
print(x.value)
示例8: _generate_cvxpy_problem
# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import quad_form [as 別名]
def _generate_cvxpy_problem(self):
'''
Generate QP problem
'''
x_var = cvxpy.Variable(self.n)
objective = .5 * cvxpy.quad_form(x_var, self.P) + self.q * x_var
constraints = [self.A * x_var == self.u]
problem = cvxpy.Problem(cvxpy.Minimize(objective), constraints)
return problem
示例9: _generate_cvxpy_problem
# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import quad_form [as 別名]
def _generate_cvxpy_problem(self):
'''
Generate QP problem
'''
x_var = cvxpy.Variable(self.n)
objective = .5 * cvxpy.quad_form(x_var, self.P) + self.q * x_var + \
self.r
constraints = [self.A * x_var <= self.u, self.A * x_var >= self.l]
problem = cvxpy.Problem(cvxpy.Minimize(objective), constraints)
return problem
示例10: _generate_cvxpy_problem
# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import quad_form [as 別名]
def _generate_cvxpy_problem(self):
'''
Generate QP problem
'''
x_var = cvxpy.Variable(self.n)
objective = .5 * cvxpy.quad_form(x_var, self.P) + self.q * x_var
constraints = [self.A * x_var <= self.u, self.A * x_var >= self.l]
problem = cvxpy.Problem(cvxpy.Minimize(objective), constraints)
return problem
示例11: portfolio_opt
# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import quad_form [as 別名]
def portfolio_opt(p):
""" Create a portfolio optimization problem with p dimensions """
temp = np.random.randn(p, p)
Sigma = temp.T.dot(temp)
Sigma_sqrt = sp.linalg.sqrtm(Sigma)
o = np.ones((p, 1))
# Create standard form cone problem
Zp1 = np.zeros((p,1))
# setup for cone problem
c = np.vstack([Zp1, np.array([[1.0]])]).ravel()
G1 = sp.linalg.block_diag(2.0*Sigma_sqrt, -1.0)
q = np.vstack([Zp1, np.array([[1.0]])])
G2 = np.hstack([o.T, np.array([[0.0]])])
G3 = np.hstack([-o.T, np.array([[0.0]])])
h = np.vstack([Zp1, np.array([[1.0]])])
z = 1.0
A = np.vstack([G2, G3, -q.T, -G1 ])
b = np.vstack([1.0, -1.0, np.array([[z]]), h]).ravel()
betahat = cp.Variable(p)
return (betahat, cp.Problem(cp.Minimize(cp.quad_form(betahat, Sigma)),
[o.T * betahat == 1]), {
'A' : A,
'b' : b,
'c' : c,
'dims' : {
'l' : 2,
'q' : [p+2]
},
'beta_from_x' : lambda x: x[:p]
})
示例12: optimize_focality_cvxpy
# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import quad_form [as 別名]
def optimize_focality_cvxpy(l, Q, target_mean, max_total_current=None,
max_el_current=None, Qin=None, max_angle=None, return_duals=False,
none_on_infeasibility=False):
import cvxpy
if max_total_current is None and max_el_current is None:
raise ValueError('Please define a maximal total current or maximal electrode ' +
'current')
n = l.shape[0]
C = np.vstack([np.eye(n), -np.eye(n)])
A = np.ones(n)
if max_el_current is not None:
d = max_el_current * np.ones(C.shape[0])
eps = 1e-3 * max_el_current
else:
d = 1e10 * np.ones(C.shape[0])
if max_total_current is not None:
max_l1 = 2 * max_total_current
else:
max_l1 = None
C = np.vstack([C, l])
d = np.hstack([d, target_mean])
x = cvxpy.Variable(n)
p = cvxpy.Problem(cvxpy.Maximize(l * x))
p.constraints = [C * x <= d,
A * x == 0]
if max_total_current is not None:
p.constraints.append(cvxpy.norm(x, 1) <= max_l1)
p.solve(solver=cvxpy.SCS)
v = np.squeeze(np.array(x.value)).T
field_component = l.dot(v)
if field_component * (1 + 1e-4) < target_mean:
return v
else:
target_field = target_mean
# Solve the QP
eq_constraints = np.vstack([A, l])
b = np.array([0, target_field])
C = C[:-1]
d = d[:-1]
p = cvxpy.Problem(cvxpy.Minimize(cvxpy.quad_form(x, Q)))
p.constraints = [C * x <= d,
eq_constraints * x == b]
if max_total_current is not None:
p.constraints.append(cvxpy.norm(x, 1) <= max_l1)
p.solve(solver=cvxpy.SCS)
v = np.squeeze(np.array(x.value)).T
return v
示例13: cvxpy_solve_qp
# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import quad_form [as 別名]
def cvxpy_solve_qp(P, q, G=None, h=None, A=None, b=None, initvals=None,
solver=None, verbose=False):
"""
Solve a Quadratic Program defined as:
.. math::
\\begin{split}\\begin{array}{ll}
\\mbox{minimize} &
\\frac{1}{2} x^T P x + q^T x \\\\
\\mbox{subject to}
& G x \\leq h \\\\
& A x = h
\\end{array}\\end{split}
calling a given solver using the `CVXPY <http://www.cvxpy.org/>`_ modelling
language.
Parameters
----------
P : array, shape=(n, n)
Primal quadratic cost matrix.
q : array, shape=(n,)
Primal quadratic cost vector.
G : array, shape=(m, n)
Linear inequality constraint matrix.
h : array, shape=(m,)
Linear inequality constraint vector.
A : array, shape=(meq, n), optional
Linear equality constraint matrix.
b : array, shape=(meq,), optional
Linear equality constraint vector.
initvals : array, shape=(n,), optional
Warm-start guess vector (not used).
solver : string, optional
Solver name in ``cvxpy.installed_solvers()``.
verbose : bool, optional
Set to `True` to print out extra information.
Returns
-------
x : array, shape=(n,)
Solution to the QP, if found, otherwise ``None``.
"""
if initvals is not None:
print("CVXPY: note that warm-start values are ignored by wrapper")
n = q.shape[0]
x = Variable(n)
P = Constant(P) # see http://www.cvxpy.org/en/latest/faq/
objective = Minimize(0.5 * quad_form(x, P) + q * x)
constraints = []
if G is not None:
constraints.append(G * x <= h)
if A is not None:
constraints.append(A * x == b)
prob = Problem(objective, constraints)
prob.solve(solver=solver, verbose=verbose)
x_opt = array(x.value).reshape((n,))
return x_opt
示例14: solve_quadratic_program
# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import quad_form [as 別名]
def solve_quadratic_program(self, P, q):
"""
Solve the quadratic program optimization problem.
This function solved the quadratic program to minimize the objective function
f(x) = 1/2(x*P*x)+q*x
subject to the additional constraints
Gx <= h
Where P, q are given and G,h are computed to ensure that x represents
a probability vector and subject to honesty constraints if required
Args:
P (matrix): A matrix representing the P component of the objective function
q (list): A vector representing the q component of the objective function
Returns:
list: The solution of the quadratic program (represents probabilities)
Additional information:
This method is the only place in the code where we rely on the cvxpy library
should we consider another library, only this method needs to change.
"""
try:
import cvxpy
except ImportError:
logger.error("cvxpy module needs to be installed to use this feature.")
P = numpy.array(P).astype(float)
q = numpy.array(q).astype(float).T
n = len(q)
# G and h constrain:
# 1) sum of probs is less then 1
# 2) All probs bigger than 0
# 3) Honesty (measured using fidelity, if given)
G_data = [[1] * n] + [([-1 if i == k else 0 for i in range(n)])
for k in range(n)]
h_data = [1] + [0] * n
if self.fidelity_data is not None:
G_data.append(self.fidelity_data['coefficients'])
h_data.append(self.fidelity_data['goal'])
G = numpy.array(G_data).astype(float)
h = numpy.array(h_data).astype(float)
x = cvxpy.Variable(n)
prob = cvxpy.Problem(
cvxpy.Minimize((1 / 2) * cvxpy.quad_form(x, P) + q.T @ x),
[G @ x <= h])
prob.solve()
return x.value
示例15: use_modeling_tool
# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import quad_form [as 別名]
def use_modeling_tool(A, B, N, Q, R, P, x0, umax=None, umin=None, xmin=None, xmax=None):
"""
solve MPC with modeling tool for test
"""
(nx, nu) = B.shape
# mpc calculation
x = cvxpy.Variable((nx, N + 1))
u = cvxpy.Variable((nu, N))
costlist = 0.0
constrlist = []
for t in range(N):
costlist += 0.5 * cvxpy.quad_form(x[:, t], Q)
costlist += 0.5 * cvxpy.quad_form(u[:, t], R)
constrlist += [x[:, t + 1] == A * x[:, t] + B * u[:, t]]
if xmin is not None:
constrlist += [x[:, t] >= xmin[:, 0]]
if xmax is not None:
constrlist += [x[:, t] <= xmax[:, 0]]
costlist += 0.5 * cvxpy.quad_form(x[:, N], P) # terminal cost
if xmin is not None:
constrlist += [x[:, N] >= xmin[:, 0]]
if xmax is not None:
constrlist += [x[:, N] <= xmax[:, 0]]
if umax is not None:
constrlist += [u <= umax] # input constraints
if umin is not None:
constrlist += [u >= umin] # input constraints
constrlist += [x[:, 0] == x0[:, 0]] # inital state constraints
prob = cvxpy.Problem(cvxpy.Minimize(costlist), constrlist)
prob.solve(verbose=True)
return x.value, u.value