本文整理匯總了Python中cvxpy.mul_elemwise方法的典型用法代碼示例。如果您正苦於以下問題:Python cvxpy.mul_elemwise方法的具體用法?Python cvxpy.mul_elemwise怎麽用?Python cvxpy.mul_elemwise使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類cvxpy
的用法示例。
在下文中一共展示了cvxpy.mul_elemwise方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_inpaint_func_tv
# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import mul_elemwise [as 別名]
def get_inpaint_func_tv():
def inpaint_func(image, mask):
"""Total variation inpainting"""
inpainted = np.zeros_like(image)
for c in range(image.shape[2]):
image_c = image[:, :, c]
mask_c = mask[:, :, c]
if np.min(mask_c) > 0:
# if mask is all ones, no need to inpaint
inpainted[:, :, c] = image_c
else:
h, w = image_c.shape
inpainted_c_var = cvxpy.Variable(h, w)
obj = cvxpy.Minimize(cvxpy.tv(inpainted_c_var))
constraints = [cvxpy.mul_elemwise(mask_c, inpainted_c_var) == cvxpy.mul_elemwise(mask_c, image_c)]
prob = cvxpy.Problem(obj, constraints)
# prob.solve(solver=cvxpy.SCS, max_iters=100, eps=1e-2) # scs solver
prob.solve() # default solver
inpainted[:, :, c] = inpainted_c_var.value
return inpainted
return inpaint_func
示例2: solve_spectral
# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import mul_elemwise [as 別名]
def solve_spectral(prob, *args, **kwargs):
"""Solve the spectral relaxation with lambda = 1.
"""
# TODO: do this efficiently without SDP lifting
# lifted variables and semidefinite constraint
X = cvx.Semidef(prob.n + 1)
W = prob.f0.homogeneous_form()
rel_obj = cvx.Minimize(cvx.sum_entries(cvx.mul_elemwise(W, X)))
W1 = sum([f.homogeneous_form() for f in prob.fs if f.relop == '<='])
W2 = sum([f.homogeneous_form() for f in prob.fs if f.relop == '=='])
rel_prob = cvx.Problem(
rel_obj,
[
cvx.sum_entries(cvx.mul_elemwise(W1, X)) <= 0,
cvx.sum_entries(cvx.mul_elemwise(W2, X)) == 0,
X[-1, -1] == 1
]
)
rel_prob.solve(*args, **kwargs)
if rel_prob.status not in [cvx.OPTIMAL, cvx.OPTIMAL_INACCURATE]:
raise Exception("Relaxation problem status: %s" % rel_prob.status)
(w, v) = LA.eig(X.value)
return np.sqrt(np.max(w))*np.asarray(v[:-1, np.argmax(w)]).flatten(), rel_prob.value
示例3: solve_sdr
# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import mul_elemwise [as 別名]
def solve_sdr(prob, *args, **kwargs):
"""Solve the SDP relaxation.
"""
# lifted variables and semidefinite constraint
X = cvx.Semidef(prob.n + 1)
W = prob.f0.homogeneous_form()
rel_obj = cvx.Minimize(cvx.sum_entries(cvx.mul_elemwise(W, X)))
rel_constr = [X[-1, -1] == 1]
for f in prob.fs:
W = f.homogeneous_form()
lhs = cvx.sum_entries(cvx.mul_elemwise(W, X))
if f.relop == '==':
rel_constr.append(lhs == 0)
else:
rel_constr.append(lhs <= 0)
rel_prob = cvx.Problem(rel_obj, rel_constr)
rel_prob.solve(*args, **kwargs)
if rel_prob.status not in [cvx.OPTIMAL, cvx.OPTIMAL_INACCURATE]:
raise Exception("Relaxation problem status: %s" % rel_prob.status)
return X.value, rel_prob.value
# phase 1: optimize infeasibility
示例4: __str__
# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import mul_elemwise [as 別名]
def __str__(self): return "huber loss"
# class FractionalLoss(Loss):
# PRECISION = 1e-10
# def loss(self, A, U):
# B = cp.Constant(A)
# U = cp.max_elemwise(U, self.PRECISION) # to avoid dividing by zero
# return cp.max_elemwise(cp.mul_elemwise(cp.inv_pos(cp.pos(U)), B-U), \
# return maximum((A - U)/U, (U - A)/A)
#
示例5: loss
# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import mul_elemwise [as 別名]
def loss(self, A, U): return cp.sum_entries(cp.pos(ones(A.shape)-cp.mul_elemwise(cp.Constant(A), U)))
示例6: _initialize_probs
# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import mul_elemwise [as 別名]
def _initialize_probs(self, A, k, missing_list, regX, regY):
# useful parameters
m = A[0].shape[0]
ns = [a.shape[1] for a in A]
if missing_list == None: missing_list = [[]]*len(self.L)
# initialize A, X, Y
B = self._initialize_A(A, missing_list)
X0, Y0 = self._initialize_XY(B, k, missing_list)
self.X0, self.Y0 = X0, Y0
# cvxpy problems
Xv, Yp = cp.Variable(m,k), [cp.Parameter(k+1,ni) for ni in ns]
Xp, Yv = cp.Parameter(m,k+1), [cp.Variable(k+1,ni) for ni in ns]
Xp.value = copy(X0)
for yj, yj0 in zip(Yp, Y0): yj.value = copy(yj0)
onesM = cp.Constant(ones((m,1)))
obj = sum(L(Aj, cp.mul_elemwise(mask, Xv*yj[:-1,:] \
+ onesM*yj[-1:,:]) + offset) + ry(yj[:-1,:])\
for L, Aj, yj, mask, offset, ry in \
zip(self.L, A, Yp, self.masks, self.offsets, regY)) + regX(Xv)
pX = cp.Problem(cp.Minimize(obj))
pY = [cp.Problem(cp.Minimize(\
L(Aj, cp.mul_elemwise(mask, Xp*yj) + offset) \
+ ry(yj[:-1,:]) + regX(Xp))) \
for L, Aj, yj, mask, offset, ry in zip(self.L, A, Yv, self.masks, self.offsets, regY)]
self.probX = (Xv, Yp, pX)
self.probY = (Xp, Yv, pY)
示例7: test_problem
# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import mul_elemwise [as 別名]
def test_problem(self):
"""Test problem object.
"""
X = Variable((4, 2))
B = np.reshape(np.arange(8), (4, 2)) * 1.
prox_fns = [norm1(X), sum_squares(X, b=B)]
prob = Problem(prox_fns)
# prob.partition(quad_funcs = [prox_fns[0], prox_fns[1]])
prob.set_automatic_frequency_split(False)
prob.set_absorb(False)
prob.set_implementation(Impl['halide'])
prob.set_solver('admm')
prob.solve()
true_X = norm1(X).prox(2, B.copy())
self.assertItemsAlmostEqual(X.value, true_X, places=2)
prob.solve(solver="pc")
self.assertItemsAlmostEqual(X.value, true_X, places=2)
prob.solve(solver="hqs", eps_rel=1e-6,
rho_0=1.0, rho_scale=np.sqrt(2.0) * 2.0, rho_max=2**16,
max_iters=20, max_inner_iters=500, verbose=False)
self.assertItemsAlmostEqual(X.value, true_X, places=2)
# CG
prob = Problem(prox_fns)
prob.set_lin_solver("cg")
prob.solve(solver="admm")
self.assertItemsAlmostEqual(X.value, true_X, places=2)
prob.solve(solver="hqs", eps_rel=1e-6,
rho_0=1.0, rho_scale=np.sqrt(2.0) * 2.0, rho_max=2**16,
max_iters=20, max_inner_iters=500, verbose=False)
self.assertItemsAlmostEqual(X.value, true_X, places=2)
# Quad funcs.
prob = Problem(prox_fns)
prob.solve(solver="admm")
self.assertItemsAlmostEqual(X.value, true_X, places=2)
# Absorbing lin ops.
prox_fns = [norm1(5 * mul_elemwise(B, X)), sum_squares(-2 * X, b=B)]
prob = Problem(prox_fns)
prob.set_absorb(True)
prob.solve(solver="admm", eps_rel=1e-6, eps_abs=1e-6)
cvx_X = cvx.Variable(4, 2)
cost = cvx.sum_squares(-2 * cvx_X - B) + cvx.norm(5 * cvx.mul_elemwise(B, cvx_X), 1)
cvx_prob = cvx.Problem(cvx.Minimize(cost))
cvx_prob.solve(solver=cvx.SCS)
self.assertItemsAlmostEqual(X.value, cvx_X.value, places=2)
prob.set_absorb(False)
prob.solve(solver="admm", eps_rel=1e-6, eps_abs=1e-6)
self.assertItemsAlmostEqual(X.value, cvx_X.value, places=2)
# Constant offsets.
prox_fns = [norm1(5 * mul_elemwise(B, X)), sum_squares(-2 * X - B)]
prob = Problem(prox_fns)
prob.solve(solver="admm", eps_rel=1e-6, eps_abs=1e-6)
self.assertItemsAlmostEqual(X.value, cvx_X.value, places=2)
示例8: balance_cvx
# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import mul_elemwise [as 別名]
def balance_cvx(hh_table, A, w, mu=None, verbose_solver=False):
"""Maximum Entropy allocaion method for a single unit
Args:
hh_table (numpy matrix): Table of households categorical data
A (numpy matrix): Area marginals (controls)
w (numpy array): Initial household allocation weights
mu (numpy array): Importance weights of marginals fit accuracy
verbose_solver (boolean): Provide detailed solver info
Returns:
(numpy matrix, numpy matrix): Household weights, relaxation factors
"""
n_samples, n_controls = hh_table.shape
x = cvx.Variable(n_samples)
if mu is None:
objective = cvx.Maximize(
cvx.sum_entries(cvx.entr(x) + cvx.mul_elemwise(cvx.log(w.T), x))
)
constraints = [
x >= 0,
x.T * hh_table == A,
]
prob = cvx.Problem(objective, constraints)
prob.solve(solver=cvx.SCS, verbose=verbose_solver)
return x.value
else:
# With relaxation factors
z = cvx.Variable(n_controls)
objective = cvx.Maximize(
cvx.sum_entries(cvx.entr(x) + cvx.mul_elemwise(cvx.log(w.T), x)) +
cvx.sum_entries(mu * (cvx.entr(z)))
)
constraints = [
x >= 0,
z >= 0,
x.T * hh_table == cvx.mul_elemwise(A, z.T),
]
prob = cvx.Problem(objective, constraints)
prob.solve(solver=cvx.SCS, verbose=verbose_solver)
return x.value, z.value