當前位置: 首頁>>代碼示例>>Python>>正文


Python cvxpy.abs方法代碼示例

本文整理匯總了Python中cvxpy.abs方法的典型用法代碼示例。如果您正苦於以下問題:Python cvxpy.abs方法的具體用法?Python cvxpy.abs怎麽用?Python cvxpy.abs使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在cvxpy的用法示例。


在下文中一共展示了cvxpy.abs方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import abs [as 別名]
def __init__(self, pendulum):
        super(Stabilizer, self).__init__()
        ref_com = pendulum.com.p + ref_offset
        n = pendulum.contact.normal
        lambda_ = -dot(n, gravity) / dot(n, ref_com - pendulum.contact.p)
        omega = sqrt(lambda_)
        ref_cop = ref_com + gravity / lambda_
        assert abs(lambda_ - pendulum.lambda_) < 1e-5
        self.contact = pendulum.contact
        self.dcm = ref_com
        self.omega = omega
        self.pendulum = pendulum
        self.ref_com = ref_com
        self.ref_comd = numpy.zeros(3)
        self.ref_cop = ref_cop
        self.ref_lambda = lambda_
        self.ref_omega = omega 
開發者ID:stephane-caron,項目名稱:pymanoid,代碼行數:19,代碼來源:vhip_stabilization.py

示例2: get_constr_error

# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import abs [as 別名]
def get_constr_error(constr):
    if isinstance(constr, cvx.constraints.Equality):
        error = cvx.abs(constr.args[0] - constr.args[1])
    elif isinstance(constr, cvx.constraints.Inequality):
        error = cvx.pos(constr.args[0] - constr.args[1])
    elif isinstance(constr, cvx.constraints.PSD):
        mat = constr.args[0] - constr.args[1]
        error = cvx.neg(cvx.lambda_min(mat + mat.T)/2)
    return cvx.sum(error) 
開發者ID:cvxgrp,項目名稱:ncvx,代碼行數:11,代碼來源:admm_problem.py

示例3: is_better

# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import abs [as 別名]
def is_better(noncvx_inf, opt_val, best_so_far, error):
    """Is the current result better than best_so_far?
    """
    inf_diff = best_so_far[0] - noncvx_inf
    return (inf_diff > error) or \
           (abs(inf_diff) <= error and opt_val < best_so_far[1]) 
開發者ID:cvxgrp,項目名稱:ncvx,代碼行數:8,代碼來源:admm_problem.py

示例4: relax

# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import abs [as 別名]
def relax(self):
        return [cvx.abs(self) <= self.M] 
開發者ID:cvxgrp,項目名稱:ncvx,代碼行數:4,代碼來源:integer.py

示例5: get_constraints

# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import abs [as 別名]
def get_constraints(self, X_v, U_v, X_last_p, U_last_p):
        """
        Get model specific constraints.

        :param X_v: cvx variable for current states
        :param U_v: cvx variable for current inputs
        :param X_last_p: cvx parameter for last states
        :param U_last_p: cvx parameter for last inputs
        :return: A list of cvx constraints
        """
        # Boundary conditions:
        constraints = [
            X_v[:, 0] == self.x_init,
            X_v[:, -1] == self.x_final,

            U_v[:, 0] == 0,
            U_v[:, -1] == 0
        ]

        # Input conditions:
        constraints += [
            0 <= U_v[0, :],
            U_v[0, :] <= self.v_max,
            cvx.abs(U_v[1, :]) <= self.w_max,
        ]

        # State conditions:
        constraints += [
            X_v[0:2, :] <= self.upper_bound - self.robot_radius,
            X_v[0:2, :] >= self.lower_bound + self.robot_radius,
        ]

        # linearized obstacles
        for j, obst in enumerate(self.obstacles):
            p = obst[0]
            r = obst[1] + self.robot_radius

            lhs = [(X_last_p[0:2, k] - p) / (cvx.norm((X_last_p[0:2, k] - p)) + 1e-6) * (X_v[0:2, k] - p)
                   for k in range(K)]
            constraints += [r - cvx.vstack(lhs) <= self.s_prime[j]]
        return constraints 
開發者ID:EmbersArc,項目名稱:SCvx,代碼行數:43,代碼來源:diffdrive_2d.py

示例6: get_constraints

# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import abs [as 別名]
def get_constraints(self, X_v, U_v, X_last_p, U_last_p):
        """
        Get model specific constraints.

        :param X_v: cvx variable for current states
        :param U_v: cvx variable for current inputs
        :param X_last_p: cvx parameter for last states
        :param U_last_p: cvx parameter for last inputs
        :return: A list of cvx constraints
        """

        constraints = [
            # Boundary conditions:
            X_v[0:2, 0] == self.x_init[0:2],
            X_v[2:4, 0] == self.x_init[2:4],
            X_v[4, 0] == self.x_init[4],
            X_v[5, 0] == self.x_init[5],

            X_v[:, -1] == self.x_final,

            # State constraints:
            cvx.abs(X_v[4, :]) <= self.t_max,
            cvx.abs(X_v[5, :]) <= self.w_max,
            X_v[1, :] >= 0,

            # Control constraints:
            cvx.abs(U_v[0, :]) <= self.max_gimbal,
            U_v[1, :] >= self.T_min,
            U_v[1, :] <= self.T_max,
        ]
        return constraints 
開發者ID:EmbersArc,項目名稱:SCvx,代碼行數:33,代碼來源:rocket_landing_2d.py

示例7: _constraints

# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import abs [as 別名]
def _constraints(self, X, missing_mask, S, error_tolerance):
        """
        Parameters
        ----------
        X : np.array
            Data matrix with missing values filled in

        missing_mask : np.array
            Boolean array indicating where missing values were

        S : cvxpy.Variable
            Representation of solution variable
        """
        ok_mask = ~missing_mask
        masked_X = cvxpy.multiply(ok_mask, X)
        masked_S = cvxpy.multiply(ok_mask, S)
        abs_diff = cvxpy.abs(masked_S - masked_X)
        close_to_data = abs_diff <= error_tolerance
        constraints = [close_to_data]
        if self.require_symmetric_solution:
            constraints.append(S == S.T)

        if self.min_value is not None:
            constraints.append(S >= self.min_value)

        if self.max_value is not None:
            constraints.append(S <= self.max_value)

        return constraints 
開發者ID:YyzHarry,項目名稱:ME-Net,代碼行數:31,代碼來源:nuclear_norm_minimization.py

示例8: fit

# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import abs [as 別名]
def fit(self, X, y):
        X, y = check_X_y(X, y, estimator=self, dtype=FLOAT_DTYPES)
        if self.effect not in self.allowed_effects:
            raise ValueError(f"effect {self.effect} must be in {self.allowed_effects}")

        def deadzone(errors):
            if self.effect == "linear":
                return np.where(errors > self.threshold, errors, np.zeros(errors.shape))
            if self.effect == "quadratic":
                return np.where(
                    errors > self.threshold, errors ** 2, np.zeros(errors.shape)
                )

        def training_loss(weights):
            diff = np.abs(np.dot(X, weights) - y)
            if self.relative:
                diff = diff / y
            return np.mean(deadzone(diff))

        n, k = X.shape

        # Build a function that returns gradients of training loss using autograd.
        training_gradient_fun = grad(training_loss)

        # Check the gradients numerically, just to be safe.
        weights = np.random.normal(0, 1, k)
        if self.check_grad:
            check_grads(training_loss, modes=["rev"])(weights)

        # Optimize weights using gradient descent.
        self.loss_log_ = np.zeros(self.n_iter)
        self.wts_log_ = np.zeros((self.n_iter, k))
        self.deriv_log_ = np.zeros((self.n_iter, k))
        for i in range(self.n_iter):
            weights -= training_gradient_fun(weights) * self.stepsize
            self.wts_log_[i, :] = weights.ravel()
            self.loss_log_[i] = training_loss(weights)
            self.deriv_log_[i, :] = training_gradient_fun(weights).ravel()
        self.coefs_ = weights
        return self 
開發者ID:koaning,項目名稱:scikit-lego,代碼行數:42,代碼來源:linear_model.py

示例9: constraints

# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import abs [as 別名]
def constraints(self, y_hat, y_true, sensitive, n_obs):
        if self.covariance_threshold is not None:
            dec_boundary_cov = y_hat @ (sensitive - np.mean(sensitive, axis=0)) / n_obs
            return [cp.abs(dec_boundary_cov) <= self.covariance_threshold]
        else:
            return [] 
開發者ID:koaning,項目名稱:scikit-lego,代碼行數:8,代碼來源:linear_model.py

示例10: _retrieve_imminent_reference

# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import abs [as 別名]
def _retrieve_imminent_reference(self):
        """
        Retrieve the reference state and reference steer in the imminent
        horizon.

        :return: reference state and reference steer
        """
        reference_state = np.zeros(
            (self.num_state, self.config['horizon'] + 1))
        reference_steer = np.zeros((1, self.config['horizon'] + 1))

        arc_displacement = 0.0
        for t in range(self.config['horizon'] + 1):
            offset = int(round(arc_displacement / self.delta_s))
            if (self.path_index + offset) < self.path_length:
                reference_state[0, t] = \
                    self.reference.x_list[self.path_index + offset]
                reference_state[1, t] = \
                    self.reference.y_list[self.path_index + offset]
                reference_state[2, t] = \
                    self.reference.vel_list[self.path_index + offset]
                reference_state[3, t] = \
                    self.reference.yaw_list[self.path_index + offset]
            else:
                reference_state[0, t] = \
                    self.reference.x_list[self.path_length - 1]
                reference_state[1, t] = \
                    self.reference.y_list[self.path_length - 1]
                reference_state[2, t] = \
                    self.reference.vel_list[self.path_length - 1]
                reference_state[3, t] = \
                    self.reference.yaw_list[self.path_length - 1]
            arc_displacement = \
                arc_displacement + abs(self.vehicle.vel) * self.delta_t
        return reference_state, reference_steer 
開發者ID:erdos-project,項目名稱:pylot,代碼行數:37,代碼來源:mpc.py

示例11: constraints

# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import abs [as 別名]
def constraints(self):
        p1 = self.terminals[0].power_var
        p2 = self.terminals[1].power_var

        constrs = []
        if self.alpha > 0:
            constrs += [p1 + p2 >= self.alpha * cvx.square((p1 - p2) / 2)]
            if self.power_max is not None:
                constrs += [2 * self.alpha * self.power_max**2 >= p1 + p2]
        else:
            constrs += [p1 + p2 == 0]
            if self.power_max is not None:
                constrs += [cvx.abs((p1 - p2) / 2) <= self.power_max]

        return constrs 
開發者ID:cvxgrp,項目名稱:cvxpower,代碼行數:17,代碼來源:devices.py

示例12: optimizeRelationships

# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import abs [as 別名]
def optimizeRelationships(relPred,relNodes,gtNodeNeighbors,penalty=490):
    #if 'cvxpy' not in sys.modules:
    import cvxpy
    useRel = cvxpy.Variable(relPred.size(0),boolean=True)

    obj =0
    huh=0
    for i in range(relPred.size(0)):
        obj += relPred[i].item()*useRel[i]
        huh +=useRel[i]


    constraint = [0]*len(gtNodeNeighbors)
    for i in range(len(gtNodeNeighbors)):
        relI=0
        for a,b in relNodes:
            j=None
            if a==i:
                j=b
            elif b==i:
                j=a
            if j is not None:
                constraint[i] += useRel[relI]
            relI+=1
        constraint[i] -= gtNodeNeighbors[i]
        #obj -= cvxpy.power(penalty,(cvxpy.abs(constraint[i]))) #this causes it to not miss on the same node more than once
        constraint[i] = cvxpy.abs(constraint[i])
        obj -= penalty*constraint[i]


    cs=[]
    for i in range(len(gtNodeNeighbors)):
        cs.append(constraint[i]<=1)
    problem = cvxpy.Problem(cvxpy.Maximize(obj),cs)
    #problem.solve(solver=cvxpy.GLPK_MI)
    problem.solve(solver=cvxpy.ECOS_BB)
    assert(useRel.value is not None)
    return useRel.value 
開發者ID:herobd,項目名稱:Visual-Template-Free-Form-Parsing,代碼行數:40,代碼來源:optimize.py

示例13: optimizeRelationshipsSoft

# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import abs [as 別名]
def optimizeRelationshipsSoft(relPred,relNodes,predNodeNeighbors,penalty=1.2,threshold=0.5):
    #if 'cvxpy' not in sys.modules:
    import cvxpy
    useRel = cvxpy.Variable(relPred.size(0),boolean=True)

    obj =0
    huh=0
    for i in range(relPred.size(0)):
        obj += (relPred[i].item()-threshold)*useRel[i]
        huh +=useRel[i]


    difference = [0]*len(predNodeNeighbors)
    for i in range(len(predNodeNeighbors)):
        relI=0
        for a,b in relNodes:
            j=None
            if a==i:
                j=b
            elif b==i:
                j=a
            if j is not None:
                difference[i] += useRel[relI]
            relI+=1
        difference[i] -= predNodeNeighbors[i]
        #difference[i] = cvxpy.abs(difference[i])
        #obj -= cvxpy.power(penalty,difference[i]) #this causes it to not miss on the same node more than once
        obj -= penalty*cvxpy.power(difference[i],2)
        #obj -= penalty*cvxpy.maximum(1,difference[i]) - penalty #double penalty if difference>1
        #obj -= penalty*cvxpy.maximum(2,difference[i]) - 2*penalty #triple penalty if difference>2


    cs=[]
    #for i in range(len(predNodeNeighbors)):
    #    cs.append(difference[i]<=4)
    problem = cvxpy.Problem(cvxpy.Maximize(obj),cs)
    #problem.solve(solver=cvxpy.GLPK_MI)
    problem.solve(solver=cvxpy.ECOS_BB)
    return useRel.value 
開發者ID:herobd,項目名稱:Visual-Template-Free-Form-Parsing,代碼行數:41,代碼來源:optimize.py

示例14: mixing_sp

# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import abs [as 別名]
def mixing_sp(y_fit,ref1,ref2):
    """mix two reference spectra to match the given ones

    Parameters
    ----------
    y_fit : ndarray, shape m * n
        an array containing the signals with m datapoints and n experiments
    ref1 : ndarray, shape m
        an array containing the first reference signal
    ref2 : ndarray, shape m
        an array containing the second reference signal

    Returns
    -------
    out : ndarray, shape n
        the fractions of ref1 in the mix

    Notes
    -----
    Performs the calculation by minimizing the sum of the least absolute value of the objective function:
        obj = sum(abs(y_fit-(ref1*F1 + ref2*(1-F1))))

    Uses cvxpy to perform this calculation
    """

    try:
        import cvxpy
    except ImportError:
        print('ERROR: Install cvxpy>=1.0 to use this function.')

    ref1 = ref1.reshape(1,-1)
    ref2 = ref2.reshape(1,-1)
    
    F1 = cvxpy.Variable(shape=(y_fit.shape[1],1))

    objective = cvxpy.Minimize(cvxpy.sum(cvxpy.abs(F1*ref1 + (1-F1)*ref2 - y_fit.T))) 

    constraints = [0 <= F1, F1 <= 1]

    prob = cvxpy.Problem(objective, constraints)
    prob.solve()
    return np.asarray(F1.value).reshape(-1) 
開發者ID:charlesll,項目名稱:rampy,代碼行數:44,代碼來源:mixing.py


注:本文中的cvxpy.abs方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。