當前位置: 首頁>>代碼示例>>Python>>正文


Python cvxpy.Parameter方法代碼示例

本文整理匯總了Python中cvxpy.Parameter方法的典型用法代碼示例。如果您正苦於以下問題:Python cvxpy.Parameter方法的具體用法?Python cvxpy.Parameter怎麽用?Python cvxpy.Parameter使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在cvxpy的用法示例。


在下文中一共展示了cvxpy.Parameter方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: set_parameters

# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import Parameter [as 別名]
def set_parameters(self, **kwargs):
        """
        All parameters have to be filled before calling solve().
        Takes the following arguments as keywords:

        A_bar
        B_bar
        C_bar
        S_bar
        z_bar
        X_last
        U_last
        sigma_last
        E
        weight_sigma
        weight_nu
        radius_trust_region
        """

        for key in kwargs:
            if key in self.par:
                self.par[key].value = kwargs[key]
            else:
                print(f'Parameter \'{key}\' does not exist.') 
開發者ID:EmbersArc,項目名稱:SuccessiveConvexificationFreeFinalTime,代碼行數:26,代碼來源:scproblem.py

示例2: ball_con

# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import Parameter [as 別名]
def ball_con():
    # print(f'--- {sys._getframe().f_code.co_name} ---')
    print('ball con')
    npr.seed(0)

    n = 2

    A = cp.Parameter((n, n))
    z = cp.Parameter(n)
    p = cp.Parameter(n)
    x = cp.Variable(n)
    t = cp.Variable(n)
    obj = cp.Minimize(0.5 * cp.sum_squares(x - p))
    # TODO automate introduction of variables.
    cons = [0.5 * cp.sum_squares(A * t) <= 1, t == (x - z)]
    prob = cp.Problem(obj, cons)

    L = npr.randn(n, n)
    A.value = L.T
    z.value = npr.randn(n)
    p.value = npr.randn(n)

    prob.solve(solver=cp.SCS)
    print(x.value) 
開發者ID:cvxgrp,項目名稱:cvxpylayers,代碼行數:26,代碼來源:cvxpy_examples.py

示例3: relu

# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import Parameter [as 別名]
def relu():
    # print(f'--- {sys._getframe().f_code.co_name} ---')
    print('relu')
    npr.seed(0)

    n = 4
    _x = cp.Parameter(n)
    _y = cp.Variable(n)
    obj = cp.Minimize(cp.sum_squares(_y - _x))
    cons = [_y >= 0]
    prob = cp.Problem(obj, cons)

    _x.value = npr.randn(n)

    prob.solve(solver=cp.SCS)
    print(_y.value) 
開發者ID:cvxgrp,項目名稱:cvxpylayers,代碼行數:18,代碼來源:cvxpy_examples.py

示例4: running_example

# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import Parameter [as 別名]
def running_example():
    print("running example")
    m = 20
    n = 10
    x = cp.Variable((n, 1))
    F = cp.Parameter((m, n))
    g = cp.Parameter((m, 1))
    lambd = cp.Parameter((1, 1), nonneg=True)
    objective_fn = cp.norm(F @ x - g) + lambd * cp.norm(x)
    constraints = [x >= 0]
    problem = cp.Problem(cp.Minimize(objective_fn), constraints)
    assert problem.is_dcp()
    assert problem.is_dpp()
    print("is_dpp: ", problem.is_dpp())

    F_t = torch.randn(m, n, requires_grad=True)
    g_t = torch.randn(m, 1, requires_grad=True)
    lambd_t = torch.rand(1, 1, requires_grad=True)
    layer = CvxpyLayer(problem, parameters=[F, g, lambd], variables=[x])
    x_star, = layer(F_t, g_t, lambd_t)
    x_star.sum().backward()
    print("F_t grad: ", F_t.grad)
    print("g_t grad: ", g_t.grad) 
開發者ID:cvxgrp,項目名稱:cvxpylayers,代碼行數:25,代碼來源:cvxpy_examples.py

示例5: __call__

# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import Parameter [as 別名]
def __call__(self, *parameters, solver_args={}):
        """Solve problem (or a batch of problems) corresponding to `parameters`

        Args:
          parameters: a sequence of tf.Tensors; the n-th Tensor specifies
                      the value for the n-th CVXPY Parameter. These Tensors
                      can be batched: if a Tensor has 3 dimensions, then its
                      first dimension is interpreted as the batch size.
          solver_args: a dict of optional arguments, to send to `diffcp`. Keys
                       should be the names of keyword arguments.

        Returns:
          a list of optimal variable values, one for each CVXPY Variable
          supplied to the constructor.
        """
        if len(parameters) != len(self.params):
            raise ValueError('A tensor must be provided for each CVXPY '
                             'parameter; received %d tensors, expected %d' % (
                                 len(parameters), len(self.params)))
        compute = tf.custom_gradient(
            lambda *parameters: self._compute(parameters, solver_args))
        return compute(*parameters) 
開發者ID:cvxgrp,項目名稱:cvxpylayers,代碼行數:24,代碼來源:cvxpylayer.py

示例6: test_lml

# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import Parameter [as 別名]
def test_lml(self):
        tf.random.set_seed(0)
        k = 2
        x = cp.Parameter(4)
        y = cp.Variable(4)
        obj = -x * y - cp.sum(cp.entr(y)) - cp.sum(cp.entr(1. - y))
        cons = [cp.sum(y) == k]
        problem = cp.Problem(cp.Minimize(obj), cons)
        lml = CvxpyLayer(problem, [x], [y])
        x_tf = tf.Variable([1., -1., -1., -1.], dtype=tf.float64)

        with tf.GradientTape() as tape:
            y_opt = lml(x_tf, solver_args={'eps': 1e-10})[0]
            loss = -tf.math.log(y_opt[1])

        def f():
            problem.solve(solver=cp.SCS, eps=1e-10)
            return -np.log(y.value[1])

        grad = tape.gradient(loss, [x_tf])
        numgrad = numerical_grad(f, [x], [x_tf])
        np.testing.assert_almost_equal(grad, numgrad, decimal=3) 
開發者ID:cvxgrp,項目名稱:cvxpylayers,代碼行數:24,代碼來源:test_cvxpylayer.py

示例7: test_example

# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import Parameter [as 別名]
def test_example(self):
        n, m = 2, 3
        x = cp.Variable(n)
        A = cp.Parameter((m, n))
        b = cp.Parameter(m)
        constraints = [x >= 0]
        objective = cp.Minimize(0.5 * cp.pnorm(A @ x - b, p=1))
        problem = cp.Problem(objective, constraints)
        assert problem.is_dpp()

        cvxpylayer = CvxpyLayer(problem, parameters=[A, b], variables=[x])
        A_tch = torch.randn(m, n, requires_grad=True)
        b_tch = torch.randn(m, requires_grad=True)

        # solve the problem
        solution, = cvxpylayer(A_tch, b_tch)

        # compute the gradient of the sum of the solution with respect to A, b
        solution.sum().backward() 
開發者ID:cvxgrp,項目名稱:cvxpylayers,代碼行數:21,代碼來源:test_cvxpylayer.py

示例8: test_simple_batch_socp

# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import Parameter [as 別名]
def test_simple_batch_socp(self):
        set_seed(243)
        n = 5
        m = 1
        batch_size = 4

        P_sqrt = cp.Parameter((n, n), name='P_sqrt')
        q = cp.Parameter((n, 1), name='q')
        A = cp.Parameter((m, n), name='A')
        b = cp.Parameter((m, 1), name='b')

        x = cp.Variable((n, 1), name='x')

        objective = 0.5 * cp.sum_squares(P_sqrt @ x) + q.T @ x
        constraints = [A@x == b, cp.norm(x) <= 1]
        prob = cp.Problem(cp.Minimize(objective), constraints)

        prob_tch = CvxpyLayer(prob, [P_sqrt, q, A, b], [x])

        P_sqrt_tch = torch.randn(batch_size, n, n, requires_grad=True)
        q_tch = torch.randn(batch_size, n, 1, requires_grad=True)
        A_tch = torch.randn(batch_size, m, n, requires_grad=True)
        b_tch = torch.randn(batch_size, m, 1, requires_grad=True)

        torch.autograd.gradcheck(prob_tch, (P_sqrt_tch, q_tch, A_tch, b_tch)) 
開發者ID:cvxgrp,項目名稱:cvxpylayers,代碼行數:27,代碼來源:test_cvxpylayer.py

示例9: test_shared_parameter

# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import Parameter [as 別名]
def test_shared_parameter(self):
        set_seed(243)
        m, n = 10, 5

        A = cp.Parameter((m, n))
        x = cp.Variable(n)
        b1 = np.random.randn(m)
        b2 = np.random.randn(m)
        prob1 = cp.Problem(cp.Minimize(cp.sum_squares(A @ x - b1)))
        layer1 = CvxpyLayer(prob1, parameters=[A], variables=[x])
        prob2 = cp.Problem(cp.Minimize(cp.sum_squares(A @ x - b2)))
        layer2 = CvxpyLayer(prob2, parameters=[A], variables=[x])

        A_tch = torch.randn(m, n, requires_grad=True)
        solver_args = {
            "eps": 1e-10,
            "acceleration_lookback": 0,
            "max_iters": 10000
        }

        torch.autograd.gradcheck(lambda A: torch.cat(
            [layer1(A, solver_args=solver_args)[0],
             layer2(A, solver_args=solver_args)[0]]), (A_tch,)) 
開發者ID:cvxgrp,項目名稱:cvxpylayers,代碼行數:25,代碼來源:test_cvxpylayer.py

示例10: __init__

# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import Parameter [as 別名]
def __init__(self, m, k, n, complex=False):
        if not cvx_available:
            raise RuntimeError('Cannot initialize when cvxpy is not available.')
        # Initialize parameters and variables
        A = cvx.Parameter((m, k), complex=complex)
        B = cvx.Parameter((m, n), complex=complex)
        l = cvx.Parameter(nonneg=True)
        X = cvx.Variable((k, n), complex=complex)
        # Create the problem
        # CVXPY issue:
        #   cvx.norm does not work if axis is not 0.
        # Workaround:
        #   use cvx.norm(X.T, 2, axis=0) instead of cvx.norm(X, 2, axis=1)
        obj_func = 0.5 * cvx.norm(cvx.matmul(A, X) - B, 'fro')**2 + \
                   l * cvx.sum(cvx.norm(X.T, 2, axis=0))
        self._problem = cvx.Problem(cvx.Minimize(obj_func))
        self._A = A
        self._B = B
        self._l = l
        self._X = X 
開發者ID:morriswmz,項目名稱:doatools.py,代碼行數:22,代碼來源:l1lsq.py

示例11: _generate_cvxpy_problem

# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import Parameter [as 別名]
def _generate_cvxpy_problem(self):
        '''
        Generate QP problem
        '''

        x = cvxpy.Variable(self.n)
        y = cvxpy.Variable(self.m)
        t = cvxpy.Variable(self.n)

        # Create parameeter and assign value
        lambda_cvxpy = cvxpy.Parameter()
        lambda_cvxpy.value = self.lambda_param

        objective = cvxpy.Minimize(cvxpy.quad_form(y, spa.eye(self.m))
                                   + self.lambda_param * (np.ones(self.n) * t))
        constraints = [y == self.Ad * x - self.bd,
                       -t <= x, x <= t]
        problem = cvxpy.Problem(objective, constraints)

        return problem, (x, y, t), lambda_cvxpy 
開發者ID:oxfordcontrol,項目名稱:osqp_benchmarks,代碼行數:22,代碼來源:suitesparse_lasso.py

示例12: _generate_cvxpy_problem

# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import Parameter [as 別名]
def _generate_cvxpy_problem(self):
        '''
        Generate QP problem
        '''

        x = cvxpy.Variable(self.n)
        y = cvxpy.Variable(self.k)

        # Create parameters m
        mu = cvxpy.Parameter(self.n)
        mu.value = self.mu

        objective = cvxpy.Minimize(cvxpy.quad_form(x, self.D) +
                                   cvxpy.quad_form(y, spa.eye(self.k)) +
                                   - 1 / self.gamma * (mu.T * x))
        constraints = [np.ones(self.n) * x == 1,
                       self.F.T * x == y,
                       0 <= x, x <= 1]
        problem = cvxpy.Problem(objective, constraints)

        return problem, mu 
開發者ID:oxfordcontrol,項目名稱:osqp_benchmarks,代碼行數:23,代碼來源:portfolio.py

示例13: __init__

# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import Parameter [as 別名]
def __init__(self, rows, cols, *args, **kwargs):
        super(NonCvxVariable, self).__init__((rows, cols,), *args, **kwargs)
        self.noncvx = True
        self.z = cvxpy.Parameter(self.shape)
        self.u = cvxpy.Parameter(self.shape)
        self.u.value = np.zeros(self.shape) 
開發者ID:cvxgrp,項目名稱:ncvx,代碼行數:8,代碼來源:noncvx_variable.py

示例14: set_parameters

# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import Parameter [as 別名]
def set_parameters(self, **kwargs):
        """
        All parameters have to be filled before calling solve().
        """

        for key in kwargs:
            if key in self.par:
                self.par[key].value = kwargs[key]
            else:
                print(f'Parameter \'{key}\' does not exist.') 
開發者ID:EmbersArc,項目名稱:SCvx,代碼行數:12,代碼來源:scproblem.py

示例15: print_available_parameters

# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import Parameter [as 別名]
def print_available_parameters(self):
        print('Parameter names:')
        for key in self.par:
            print(f'\t {key}')
        print('\n') 
開發者ID:EmbersArc,項目名稱:SCvx,代碼行數:7,代碼來源:scproblem.py


注:本文中的cvxpy.Parameter方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。