本文整理匯總了Python中cvxpy.Maximize方法的典型用法代碼示例。如果您正苦於以下問題:Python cvxpy.Maximize方法的具體用法?Python cvxpy.Maximize怎麽用?Python cvxpy.Maximize使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類cvxpy
的用法示例。
在下文中一共展示了cvxpy.Maximize方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _run_cvx_optimization
# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import Maximize [as 別名]
def _run_cvx_optimization(self, next_states, rewards, **solver_options):
"""Tensorflow wrapper around a cvxpy value function optimization.
Parameters
----------
next_states : ndarray
rewards : ndarray
Returns
-------
values : ndarray
The optimal values at the states.
"""
# Define random variables; convert index from np.int64 to regular
# python int to avoid strange cvxpy error; see:
# https://github.com/cvxgrp/cvxpy/issues/380
values = cvxpy.Variable(rewards.shape)
value_matrix = self.value_function.tri.parameter_derivative(
next_states)
# Make cvxpy work with sparse matrices
value_matrix = cvxpy.Constant(value_matrix)
objective = cvxpy.Maximize(cvxpy.sum(values))
constraints = [values <= rewards + self.gamma * value_matrix * values]
prob = cvxpy.Problem(objective, constraints)
# Solve optimization problem
prob.solve(**solver_options)
# Some error checking
if not prob.status == cvxpy.OPTIMAL:
raise OptimizationError('Optimization problem is {}'
.format(prob.status))
return np.array(values.value)
示例2: test_entropy_maximization
# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import Maximize [as 別名]
def test_entropy_maximization(self):
set_seed(243)
n, m, p = 5, 3, 2
tmp = np.random.rand(n)
A_np = np.random.randn(m, n)
b_np = A_np.dot(tmp)
F_np = np.random.randn(p, n)
g_np = F_np.dot(tmp) + np.random.rand(p)
x = cp.Variable(n)
A = cp.Parameter((m, n))
b = cp.Parameter(m)
F = cp.Parameter((p, n))
g = cp.Parameter(p)
obj = cp.Maximize(cp.sum(cp.entr(x)) - .01 * cp.sum_squares(x))
constraints = [A * x == b,
F * x <= g]
prob = cp.Problem(obj, constraints)
layer = CvxpyLayer(prob, [A, b, F, g], [x])
A_tch, b_tch, F_tch, g_tch = map(
lambda x: torch.from_numpy(x).requires_grad_(True), [
A_np, b_np, F_np, g_np])
torch.autograd.gradcheck(
lambda *x: layer(*x, solver_args={"eps": 1e-12,
"max_iters": 10000}),
(A_tch,
b_tch,
F_tch,
g_tch),
eps=1e-4,
atol=1e-3,
rtol=1e-3)
示例3: error_bound
# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import Maximize [as 別名]
def error_bound(L_A, L_b, A_infinity, b_infinity, data, grad_V, eta_jac, decoupling, a_hat, b_hat, controller):
xs, ts, u_noms, u_perts, V_dot_rs = data
m = u_noms.shape[1]
a_hats = [a_hat(x_train, t_train) for x_train, t_train in zip(xs, ts)]
b_hats = [b_hat(x_train, t_train) for x_train, t_train in zip(xs, ts)]
grad_Vs = [grad_V(x_train, t_train) for x_train, t_train in zip(xs, ts)]
eta_jacs = [eta_jac(x_train, t_train) for x_train, t_train in zip(xs, ts)]
V_dot_r_hats = [dot(decoupling(x_train, t_train ), u_pert) + dot(a_hat.T, u_nom + u_pert) + b_hat for x_train, t_train, u_nom, u_pert, a_hat, b_hat in zip(xs, ts, u_noms, u_perts, a_hats, b_hats)]
def opt(x, t):
# print(t)
a = Variable(m)
b = Variable(1)
obj = Maximize(a * controller.u(x, t) + b)
cons = []
a_hat_test = a_hat(x, t)
b_hat_test = b_hat(x, t)
grad_V_test = grad_V(x, t)
eta_jac_test = eta_jac(x, t)
def opt_terms(a_hat_train, b_hat_train, grad_V_train, eta_jac_train, u_nom, u_pert, V_dot_r_hat, V_dot_r, x_train):
u = u_nom + u_pert
error_obs = abs(V_dot_r - V_dot_r_hat)
error_model = abs(dot((a_hat_test - a_hat_train).T, u) + b_hat_test - b_hat_train)
error_inf = norm(dot(grad_V_train, eta_jac_train) - dot(grad_V_test, eta_jac_test))
error_inf = error_inf * (A_infinity * norm(u) + b_infinity)
error_lip = min(norm(dot(grad_V_train, eta_jac_train)), norm(dot(grad_V_test, eta_jac_test)))*norm(x_train - x)
error_lip = error_lip * (L_A * norm(u) + L_b)
return concatenate([u, ones(1)]), error_obs + error_model + error_inf + error_lip
zipped = zip(a_hats, b_hats, grad_Vs, eta_jacs, u_noms, u_perts, V_dot_r_hats, V_dot_rs, xs)
terms = [opt_terms(*params) for params in zipped]
linear, affine = zip(*terms)
linear = array(linear)
linear = concatenate([linear, -linear])
affine = array(affine)
affine = concatenate([affine, affine])
cons = [linear[:, :-1] * a + linear[:, -1] * b <= affine]
prob = Problem(obj, cons)
try:
prob.solve(solver='GLPK', glpk={'msg_lev': 'GLP_MSG_OFF'})
except Exception:
print('SOLVER FAILURE', 'State:', x, 'Control:', controller.u(x, t), 'Time:', t)
return a.value, b.value
return opt
示例4: balance_cvx
# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import Maximize [as 別名]
def balance_cvx(hh_table, A, w, mu=None, verbose_solver=False):
"""Maximum Entropy allocaion method for a single unit
Args:
hh_table (numpy matrix): Table of households categorical data
A (numpy matrix): Area marginals (controls)
w (numpy array): Initial household allocation weights
mu (numpy array): Importance weights of marginals fit accuracy
verbose_solver (boolean): Provide detailed solver info
Returns:
(numpy matrix, numpy matrix): Household weights, relaxation factors
"""
n_samples, n_controls = hh_table.shape
x = cvx.Variable(n_samples)
if mu is None:
objective = cvx.Maximize(
cvx.sum_entries(cvx.entr(x) + cvx.mul_elemwise(cvx.log(w.T), x))
)
constraints = [
x >= 0,
x.T * hh_table == A,
]
prob = cvx.Problem(objective, constraints)
prob.solve(solver=cvx.SCS, verbose=verbose_solver)
return x.value
else:
# With relaxation factors
z = cvx.Variable(n_controls)
objective = cvx.Maximize(
cvx.sum_entries(cvx.entr(x) + cvx.mul_elemwise(cvx.log(w.T), x)) +
cvx.sum_entries(mu * (cvx.entr(z)))
)
constraints = [
x >= 0,
z >= 0,
x.T * hh_table == cvx.mul_elemwise(A, z.T),
]
prob = cvx.Problem(objective, constraints)
prob.solve(solver=cvx.SCS, verbose=verbose_solver)
return x.value, z.value
示例5: diamond_norm_distance
# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import Maximize [as 別名]
def diamond_norm_distance(choi0: np.ndarray, choi1: np.ndarray) -> float:
"""
Return the diamond norm distance between two completely positive
trace-preserving (CPTP) superoperators, represented as Choi matrices.
The calculation uses the simplified semidefinite program of Watrous in [CBN]_
.. note::
This calculation becomes very slow for 4 or more qubits.
.. [CBN] Semidefinite programs for completely bounded norms.
J. Watrous.
Theory of Computing 5, 11, pp. 217-238 (2009).
http://theoryofcomputing.org/articles/v005a011
http://arxiv.org/abs/0901.4709
:param choi0: A 4**N by 4**N matrix (where N is the number of qubits)
:param choi1: A 4**N by 4**N matrix (where N is the number of qubits)
"""
# Kudos: Based on MatLab code written by Marcus P. da Silva
# (https://github.com/BBN-Q/matlab-diamond-norm/)
import cvxpy as cvx
assert choi0.shape == choi1.shape
assert choi0.shape[0] == choi1.shape[1]
dim_squared = choi0.shape[0]
dim = int(np.sqrt(dim_squared))
delta_choi = choi0 - choi1
delta_choi = (delta_choi.conj().T + delta_choi) / 2 # Enforce Hermiticity
# Density matrix must be Hermitian, positive semidefinite, trace 1
rho = cvx.Variable([dim, dim], complex=True)
constraints = [rho == rho.H]
constraints += [rho >> 0]
constraints += [cvx.trace(rho) == 1]
# W must be Hermitian, positive semidefinite
W = cvx.Variable([dim_squared, dim_squared], complex=True)
constraints += [W == W.H]
constraints += [W >> 0]
constraints += [(W - cvx.kron(np.eye(dim), rho)) << 0]
J = cvx.Parameter([dim_squared, dim_squared], complex=True)
objective = cvx.Maximize(cvx.real(cvx.trace(J.H * W)))
prob = cvx.Problem(objective, constraints)
J.value = delta_choi
prob.solve()
dnorm = prob.value * 2
return dnorm