本文整理匯總了Python中cvxpy.Constant方法的典型用法代碼示例。如果您正苦於以下問題:Python cvxpy.Constant方法的具體用法?Python cvxpy.Constant怎麽用?Python cvxpy.Constant使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類cvxpy
的用法示例。
在下文中一共展示了cvxpy.Constant方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: loss
# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import Constant [as 別名]
def loss(self, A, U): return cp.norm(cp.Constant(A) - U, "fro")/2.0
示例2: __str__
# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import Constant [as 別名]
def __str__(self): return "huber loss"
# class FractionalLoss(Loss):
# PRECISION = 1e-10
# def loss(self, A, U):
# B = cp.Constant(A)
# U = cp.max_elemwise(U, self.PRECISION) # to avoid dividing by zero
# return cp.max_elemwise(cp.mul_elemwise(cp.inv_pos(cp.pos(U)), B-U), \
# return maximum((A - U)/U, (U - A)/A)
#
示例3: _initialize_probs
# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import Constant [as 別名]
def _initialize_probs(self, A, k, missing_list, regX, regY):
# useful parameters
m = A[0].shape[0]
ns = [a.shape[1] for a in A]
if missing_list == None: missing_list = [[]]*len(self.L)
# initialize A, X, Y
B = self._initialize_A(A, missing_list)
X0, Y0 = self._initialize_XY(B, k, missing_list)
self.X0, self.Y0 = X0, Y0
# cvxpy problems
Xv, Yp = cp.Variable(m,k), [cp.Parameter(k+1,ni) for ni in ns]
Xp, Yv = cp.Parameter(m,k+1), [cp.Variable(k+1,ni) for ni in ns]
Xp.value = copy(X0)
for yj, yj0 in zip(Yp, Y0): yj.value = copy(yj0)
onesM = cp.Constant(ones((m,1)))
obj = sum(L(Aj, cp.mul_elemwise(mask, Xv*yj[:-1,:] \
+ onesM*yj[-1:,:]) + offset) + ry(yj[:-1,:])\
for L, Aj, yj, mask, offset, ry in \
zip(self.L, A, Yp, self.masks, self.offsets, regY)) + regX(Xv)
pX = cp.Problem(cp.Minimize(obj))
pY = [cp.Problem(cp.Minimize(\
L(Aj, cp.mul_elemwise(mask, Xp*yj) + offset) \
+ ry(yj[:-1,:]) + regX(Xp))) \
for L, Aj, yj, mask, offset, ry in zip(self.L, A, Yv, self.masks, self.offsets, regY)]
self.probX = (Xv, Yp, pX)
self.probY = (Xp, Yv, pY)
示例4: _run_cvx_optimization
# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import Constant [as 別名]
def _run_cvx_optimization(self, next_states, rewards, **solver_options):
"""Tensorflow wrapper around a cvxpy value function optimization.
Parameters
----------
next_states : ndarray
rewards : ndarray
Returns
-------
values : ndarray
The optimal values at the states.
"""
# Define random variables; convert index from np.int64 to regular
# python int to avoid strange cvxpy error; see:
# https://github.com/cvxgrp/cvxpy/issues/380
values = cvxpy.Variable(rewards.shape)
value_matrix = self.value_function.tri.parameter_derivative(
next_states)
# Make cvxpy work with sparse matrices
value_matrix = cvxpy.Constant(value_matrix)
objective = cvxpy.Maximize(cvxpy.sum(values))
constraints = [values <= rewards + self.gamma * value_matrix * values]
prob = cvxpy.Problem(objective, constraints)
# Solve optimization problem
prob.solve(**solver_options)
# Some error checking
if not prob.status == cvxpy.OPTIMAL:
raise OptimizationError('Optimization problem is {}'
.format(prob.status))
return np.array(values.value)
示例5: cost
# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import Constant [as 別名]
def cost(self):
p = -self.terminals[0].power_var
segments = [cvx.Constant(self.no_load_cost)]
prev_power = None
for power, price in self.bid_curve[1:]:
if prev_power is None:
offset = self.no_load_cost
else:
offset += (power - prev_power)*prev_price
segments.append(price*(p - power) + offset)
prev_power = power
prev_price = price
return cvx.max_elemwise(*segments)
示例6: admm
# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import Constant [as 別名]
def admm(self, rho=None, max_iter=50, restarts=5, alpha=1.8,
random=False, sigma=1.0, gamma=1e6, polish_best=True,
num_procs=None, parallel=True, seed=1, show_progress=False,
prox_polished=False, polish_depth=5,
neighbor_func=None, polish_func=None,
*args, **kwargs):
# rho is a list of values, one for each restart.
if rho is None:
rho = [np.random.uniform() for i in range(restarts)]
else:
assert len(rho) == restarts
# num_procs is the number of processors to launch.
if num_procs is None:
num_procs = multiprocessing.cpu_count()
# Construct the relaxation.
if type(self.objective) == cvx.Minimize:
rel_obj = self.objective
else:
rel_obj = -self.objective
rel_constr = self.constraints
for var in get_noncvx_vars(self):
rel_constr += var.relax()
rel_prob = cvx.Problem(rel_obj, rel_constr)
# HACK skip this.
# lower_bound = rel_prob.solve(*args, **kwargs)
lower_bound = -np.inf
if show_progress:
print("lower bound =", lower_bound)
# Algorithm.
if parallel:
pool = multiprocessing.Pool(num_procs)
tmp_prob = cvx.Problem(rel_prob.objective, rel_prob.constraints)
best_per_rho = pool.map(admm_inner_iter,
[(idx, tmp_prob, None, rho_val, gamma, max_iter,
random, polish_best, seed, sigma, show_progress, neighbor_func, polish_func,
prox_polished, polish_depth, lower_bound, alpha, args, kwargs) for idx, rho_val in enumerate(rho)])
pool.close()
pool.join()
else:
xvars = {var.id: var for var in rel_prob.variables()}
prox = Prox(rel_prob, xvars)
best_per_rho = list(map(admm_inner_iter,
[(idx, rel_prob, prox, rho_val, gamma, max_iter,
random, polish_best, seed, sigma, show_progress, neighbor_func, polish_func,
prox_polished, polish_depth, lower_bound, alpha, args, kwargs) for idx, rho_val in enumerate(rho)]))
# Merge best so far.
argmin = min([(val[0], idx) for idx, val in enumerate(best_per_rho)])[1]
best_so_far = best_per_rho[argmin]
#print "best found", best_so_far[0]
# Unpack result.
for var in self.variables():
var.value = best_so_far[1][var.id]
residual = cvx.Constant(0)
for constr in self.constraints:
residual += get_constr_error(constr)
return self.objective.value, residual.value
示例7: cvxpy_solve_qp
# 需要導入模塊: import cvxpy [as 別名]
# 或者: from cvxpy import Constant [as 別名]
def cvxpy_solve_qp(P, q, G=None, h=None, A=None, b=None, initvals=None,
solver=None, verbose=False):
"""
Solve a Quadratic Program defined as:
.. math::
\\begin{split}\\begin{array}{ll}
\\mbox{minimize} &
\\frac{1}{2} x^T P x + q^T x \\\\
\\mbox{subject to}
& G x \\leq h \\\\
& A x = h
\\end{array}\\end{split}
calling a given solver using the `CVXPY <http://www.cvxpy.org/>`_ modelling
language.
Parameters
----------
P : array, shape=(n, n)
Primal quadratic cost matrix.
q : array, shape=(n,)
Primal quadratic cost vector.
G : array, shape=(m, n)
Linear inequality constraint matrix.
h : array, shape=(m,)
Linear inequality constraint vector.
A : array, shape=(meq, n), optional
Linear equality constraint matrix.
b : array, shape=(meq,), optional
Linear equality constraint vector.
initvals : array, shape=(n,), optional
Warm-start guess vector (not used).
solver : string, optional
Solver name in ``cvxpy.installed_solvers()``.
verbose : bool, optional
Set to `True` to print out extra information.
Returns
-------
x : array, shape=(n,)
Solution to the QP, if found, otherwise ``None``.
"""
if initvals is not None:
print("CVXPY: note that warm-start values are ignored by wrapper")
n = q.shape[0]
x = Variable(n)
P = Constant(P) # see http://www.cvxpy.org/en/latest/faq/
objective = Minimize(0.5 * quad_form(x, P) + q * x)
constraints = []
if G is not None:
constraints.append(G * x <= h)
if A is not None:
constraints.append(A * x == b)
prob = Problem(objective, constraints)
prob.solve(solver=solver, verbose=verbose)
x_opt = array(x.value).reshape((n,))
return x_opt