本文整理匯總了Python中cvxopt.spmatrix方法的典型用法代碼示例。如果您正苦於以下問題:Python cvxopt.spmatrix方法的具體用法?Python cvxopt.spmatrix怎麽用?Python cvxopt.spmatrix使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類cvxopt
的用法示例。
在下文中一共展示了cvxopt.spmatrix方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: cvxopt_matrix
# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import spmatrix [as 別名]
def cvxopt_matrix(M):
"""
Convert matrix to CVXOPT format.
Parameters
----------
M : numpy.array
Matrix in NumPy format.
Returns
-------
N : cvxopt.matrix
Matrix in CVXOPT format.
"""
if type(M) is ndarray:
return matrix(M)
elif type(M) is spmatrix or type(M) is matrix:
return M
coo = M.tocoo()
return spmatrix(
coo.data.tolist(), coo.row.tolist(), coo.col.tolist(), size=M.shape)
示例2: _break_cols
# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import spmatrix [as 別名]
def _break_cols(mat, sizes):
n = len(sizes)
I, J, V = [], [], []
for i in range(n):
I.append([])
J.append([])
V.append([])
cumsz = np.cumsum(sizes)
import bisect
for i, j, v in zip(mat.I, mat.J, mat.V):
block = bisect.bisect(cumsz, j)
I[block].append(i)
V[block].append(v)
if block == 0:
J[block].append(j)
else:
J[block].append(j - cumsz[block - 1])
return [spmatrix(V[k], I[k], J[k], (mat.size[0], sz))
for k, sz in enumerate(sizes)]
示例3: _break_rows
# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import spmatrix [as 別名]
def _break_rows(mat, sizes):
n = len(sizes)
I, J, V = [], [], []
for i in range(n):
I.append([])
J.append([])
V.append([])
cumsz = np.cumsum(sizes)
import bisect
for i, j, v in zip(mat.I, mat.J, mat.V):
block = bisect.bisect(cumsz, i)
J[block].append(j)
V[block].append(v)
if block == 0:
I[block].append(i)
else:
I[block].append(i - cumsz[block - 1])
return [spmatrix(V[k], I[k], J[k], (sz, mat.size[1]))
for k, sz in enumerate(sizes)]
示例4: _blocdiag
# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import spmatrix [as 別名]
def _blocdiag(X, n):
"""
makes diagonal blocs of X, for indices in [sub1,sub2[
n indicates the total number of blocks (horizontally)
"""
if not isinstance(X, cvx.base.spmatrix):
X = cvx.sparse(X)
if n==1:
return X
else:
Z = spmatrix([],[],[],X.size)
mat = []
for i in range(n):
col = [Z]*(n-1)
col.insert(i,X)
mat.append(col)
return cvx.sparse(mat)
示例5: inplace_transpose
# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import spmatrix [as 別名]
def inplace_transpose(self):
if isinstance(self, Variable):
raise Exception(
'inplace_transpose should not be called on a Variable object')
for k in self.factors:
bsize = self.size[0]
bsize2 = self.size[1]
I0 = [(i // bsize) + (i % bsize) *
bsize2 for i in self.factors[k].I]
J = self.factors[k].J
V = self.factors[k].V
self.factors[k] = spmatrix(V, I0, J, self.factors[k].size)
if not (self.constant is None):
self.constant = cvx.matrix(self.constant,
self.size).T[:]
self._size = (self.size[1], self.size[0])
if (('*' in self.affstring()) or ('/' in self.affstring())
or ('+' in self.affstring()) or ('-' in self.affstring())):
self.string = '( ' + self.string + ' ).T'
else:
self.string += '.T'
示例6: diag
# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import spmatrix [as 別名]
def diag(self, dim):
if self.size != (1, 1):
raise Exception('not implemented')
selfcopy = self.copy()
idx = cvx.spdiag([1.] * dim)[:].I
for k in self.factors:
tc = 'z' if self.factors[k].typecode=='z' else 'd'
selfcopy.factors[k] = spmatrix(
[], [], [], (dim**2, self.factors[k].size[1]),tc=tc)
for i in idx:
selfcopy.factors[k][i, :] = self.factors[k]
if not self.constant is None:
tc = 'z' if self.constant.typecode=='z' else 'd'
selfcopy.constant = cvx.matrix(0., (dim**2, 1),tc=tc)
for i in idx:
selfcopy.constant[i] = self.constant[0]
else:
selfcopy.constant = None
selfcopy._size = (dim, dim)
selfcopy.string = 'diag(' + selfcopy.string + ')'
return selfcopy
示例7: __init__
# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import spmatrix [as 別名]
def __init__(self, fun, Exp, funstring):
Expression.__init__(self, self.funstring + '( ' + Exp.string + ')')
self.fun = fun
r"""The function ``f`` applied to the affine expression.
This function must take in argument a
:func:`cvxopt sparse matrix <cvxopt:cvxopt.spmatrix>` ``X``.
Moreover, the call ``fx,grad,hess=f(X)``
must return the function value :math:`f(X)` in ``fx``,
the gradient :math:`\nabla f(X)` in the
:func:`cvxopt matrix <cvxopt:cvxopt.matrix>` ``grad``,
and the Hessian :math:`\nabla^2 f(X)` in the
:func:`cvxopt sparse matrix <cvxopt:cvxopt.spmatrix>` ``hess``.
"""
self.Exp = Exp
"""The affine expression to which the function is applied"""
self.funstring = funstring
"""a string representation of the function name"""
#self.string=self.funstring+'( '+self.Exp.affstring()+' )'
示例8: _get_projector
# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import spmatrix [as 別名]
def _get_projector(R, N_ex): # !
# Projection
dim = N_ex
P = spmatrix(1, range(dim), range(dim))
glast = matrix(np.ones((1, dim)))
G = sparse([-P, P, glast])
h1 = np.zeros(dim)
h2 = np.ones(dim)
h = matrix(np.concatenate([h1, h2, [R]]))
def _project(pt):
print('start projection')
# pt = gamma.eval()
q = matrix(- np.array(pt, dtype=np.float64))
# if np.linalg.norm(pt, ord=1) < R:
# return
_res = cvxopt.solvers.qp(P, q, G, h, initvals=q)
_resx = np.array(_res['x'], dtype=np.float32)[:, 0]
# gamma_assign.eval(feed_dict={grad_hyper: _resx})
return _resx
return _project
# TODO check the following functions (look right)
示例9: compute_displacements
# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import spmatrix [as 別名]
def compute_displacements(self, xPhys):
# Setup and solve FE problem
sK = ((self.KE.flatten()[np.newaxis]).T * (
self.Emin + (xPhys)**self.penal *
(self.Emax - self.Emin))).flatten(order='F')
K = scipy.sparse.coo_matrix((sK, (self.iK, self.jK)),
shape=(self.ndof, self.ndof)).tocsc()
# Remove constrained dofs from matrix and convert to coo
K = deleterowcol(K, self.fixed, self.fixed).tocoo()
# Solve system
K1 = cvxopt.spmatrix(K.data, K.row.astype(np.int), K.col.astype(np.int))
B = cvxopt.matrix(self.f[self.free, :])
cvxopt.cholmod.linsolve(K1, B)
self.u[self.free, :] = np.array(B)[:, :]
示例10: scipy_sparse_to_spmatrix
# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import spmatrix [as 別名]
def scipy_sparse_to_spmatrix(A):
"""Efficient conversion from scipy sparse matrix to cvxopt sparse matrix"""
coo = A.tocoo()
SP = spmatrix(coo.data.tolist(), coo.row.tolist(), coo.col.tolist(), size=A.shape)
return SP
示例11: find_nearest_valid_distribution
# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import spmatrix [as 別名]
def find_nearest_valid_distribution(u_alpha, kernel, initial=None, reg=0):
""" (solution,distance_sqd)=find_nearest_valid_distribution(u_alpha,kernel):
Given a n-vector u_alpha summing to 1, with negative terms,
finds the distance (squared) to the nearest n-vector summing to 1,
with non-neg terms. Distance calculated using nxn matrix kernel.
Regularization parameter reg --
min_v (u_alpha - v)^\top K (u_alpha - v) + reg* v^\top v"""
P = matrix(2 * kernel)
n = kernel.shape[0]
q = matrix(np.dot(-2 * kernel, u_alpha))
A = matrix(np.ones((1, n)))
b = matrix(1.)
G = spmatrix(-1., range(n), range(n))
h = matrix(np.zeros(n))
dims = {'l': n, 'q': [], 's': []}
solvers.options['show_progress'] = False
solution = solvers.coneqp(
P,
q,
G,
h,
dims,
A,
b,
initvals=initial
)
distance_sqd = solution['primal objective'] + np.dot(u_alpha.T,
np.dot(kernel, u_alpha))[0, 0]
return (solution, distance_sqd)
示例12: diag_vect
# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import spmatrix [as 別名]
def diag_vect(exp):
"""
Returns the vector with the diagonal elements of the matrix expression ``exp``
**Example**
>>> import picos as pic
>>> prob=pic.Problem()
>>> X=prob.add_variable('X',(3,3))
>>> pic.tools.diag_vect(X)
# (3 x 1)-affine expression: diag(X) #
"""
from .expression import AffinExp
(n, m) = exp.size
n = min(n, m)
idx = cvx.spdiag([1.] * n)[:].I
expcopy = AffinExp(exp.factors.copy(), exp.constant, exp.size,
exp.string)
proj = spmatrix([1.] * n, range(n), idx,
(n, exp.size[0] * exp.size[1]))
for k in exp.factors.keys():
expcopy.factors[k] = proj * expcopy.factors[k]
if not exp.constant is None:
expcopy.constant = proj * expcopy.constant
expcopy._size = (n, 1)
expcopy.string = 'diag(' + exp.string + ')'
return expcopy
示例13: svecm1
# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import spmatrix [as 別名]
def svecm1(vec, triu=False):
if vec.size[1] > 1:
raise ValueError('should be a column vector')
v = vec.size[0]
n = int(np.sqrt(1 + 8 * v) - 1) // 2
if n * (n + 1) // 2 != v:
raise ValueError('vec should be of dimension n(n+1)/2')
if not isinstance(vec, cvx.spmatrix):
vec = cvx.sparse(vec)
I = []
J = []
V = []
for i, v in zip(vec.I, vec.V):
c = int(np.sqrt(1 + 8 * i) - 1) // 2
r = i - c * (c + 1) // 2
I.append(r)
J.append(c)
if r == c:
V.append(v)
else:
if triu:
V.append(v / np.sqrt(2))
else:
I.append(c)
J.append(r)
V.extend([v / np.sqrt(2)] * 2)
return spmatrix(V, I, J, (n, n))
示例14: _cplx_mat_to_real_mat
# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import spmatrix [as 別名]
def _cplx_mat_to_real_mat(M):
"""
if M = A +iB,
return the block matrix [A,-B;B,A]
"""
if not(isinstance(M, cvx.base.spmatrix) or isinstance(M, cvx.base.matrix)):
raise NameError('unexpected matrix type')
if M.typecode == 'z':
A = M.real()
B = M.imag()
else:
A = M
B = spmatrix([], [], [], A.size)
return cvx.sparse([[A, B], [-B, A]])
示例15: eval
# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import spmatrix [as 別名]
def eval(self, ind=None):
if self.constant is None:
val = spmatrix([], [], [], (self.size[0] * self.size[1], 1))
else:
val = self.constant
if self.is0():
return cvx.matrix(val, self.size)
for k in self.factors:
# ignore this factor if the coef is 0
if not(self.factors[k]):
continue
if ind is None:
if not k.value is None:
if k.vtype == 'symmetric':
val = val + self.factors[k] * svec(k.value)
else:
val = val + self.factors[k] * k.value[:]
else:
raise Exception(k + ' is not valued')
else:
if ind in k.value_alt:
if k.vtype == 'symmetric':
val = val + self.factors[k] * svec(k.value_alt[ind])
else:
val = val + self.factors[k] * k.value_alt[ind][:]
else:
raise Exception(
k + ' does not have a value for the index ' + str(ind))
return cvx.matrix(val, self.size)