本文整理匯總了Python中cvxopt.sparse方法的典型用法代碼示例。如果您正苦於以下問題:Python cvxopt.sparse方法的具體用法?Python cvxopt.sparse怎麽用?Python cvxopt.sparse使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類cvxopt
的用法示例。
在下文中一共展示了cvxopt.sparse方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _blocdiag
# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import sparse [as 別名]
def _blocdiag(X, n):
"""
makes diagonal blocs of X, for indices in [sub1,sub2[
n indicates the total number of blocks (horizontally)
"""
if not isinstance(X, cvx.base.spmatrix):
X = cvx.sparse(X)
if n==1:
return X
else:
Z = spmatrix([],[],[],X.size)
mat = []
for i in range(n):
col = [Z]*(n-1)
col.insert(i,X)
mat.append(col)
return cvx.sparse(mat)
示例2: __init__
# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import sparse [as 別名]
def __init__(self, fun, Exp, funstring):
Expression.__init__(self, self.funstring + '( ' + Exp.string + ')')
self.fun = fun
r"""The function ``f`` applied to the affine expression.
This function must take in argument a
:func:`cvxopt sparse matrix <cvxopt:cvxopt.spmatrix>` ``X``.
Moreover, the call ``fx,grad,hess=f(X)``
must return the function value :math:`f(X)` in ``fx``,
the gradient :math:`\nabla f(X)` in the
:func:`cvxopt matrix <cvxopt:cvxopt.matrix>` ``grad``,
and the Hessian :math:`\nabla^2 f(X)` in the
:func:`cvxopt sparse matrix <cvxopt:cvxopt.spmatrix>` ``hess``.
"""
self.Exp = Exp
"""The affine expression to which the function is applied"""
self.funstring = funstring
"""a string representation of the function name"""
#self.string=self.funstring+'( '+self.Exp.affstring()+' )'
示例3: _get_projector
# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import sparse [as 別名]
def _get_projector(R, N_ex): # !
# Projection
dim = N_ex
P = spmatrix(1, range(dim), range(dim))
glast = matrix(np.ones((1, dim)))
G = sparse([-P, P, glast])
h1 = np.zeros(dim)
h2 = np.ones(dim)
h = matrix(np.concatenate([h1, h2, [R]]))
def _project(pt):
print('start projection')
# pt = gamma.eval()
q = matrix(- np.array(pt, dtype=np.float64))
# if np.linalg.norm(pt, ord=1) < R:
# return
_res = cvxopt.solvers.qp(P, q, G, h, initvals=q)
_resx = np.array(_res['x'], dtype=np.float32)[:, 0]
# gamma_assign.eval(feed_dict={grad_hyper: _resx})
return _resx
return _project
# TODO check the following functions (look right)
示例4: svec
# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import sparse [as 別名]
def svec(mat, ignore_sym=False):
"""
returns the svec representation of the cvx matrix ``mat``.
(see `Dattorro, ch.2.2.2.1 <http://meboo.convexoptimization.com/Meboo.html>`_)
If ``ignore_sym = False`` (default), the function raises an Exception if ``mat`` is not symmetric.
Otherwise, elements in the lower triangle of ``mat`` are simply ignored.
"""
if not isinstance(mat, cvx.spmatrix):
mat = cvx.sparse(mat)
s0 = mat.size[0]
if s0 != mat.size[1]:
raise ValueError('mat must be square')
I = []
J = []
V = []
for (i, j, v) in zip((mat.I), (mat.J), (mat.V)):
if not ignore_sym:
if abs(mat[j, i] - v) > 1e-6:
raise ValueError('mat must be symmetric')
if i <= j:
isvec = j * (j + 1) // 2 + i
J.append(0)
I.append(isvec)
if i == j:
V.append(v)
else:
V.append(np.sqrt(2) * v)
return spmatrix(V, I, J, (s0 * (s0 + 1) // 2, 1))
示例5: svecm1
# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import sparse [as 別名]
def svecm1(vec, triu=False):
if vec.size[1] > 1:
raise ValueError('should be a column vector')
v = vec.size[0]
n = int(np.sqrt(1 + 8 * v) - 1) // 2
if n * (n + 1) // 2 != v:
raise ValueError('vec should be of dimension n(n+1)/2')
if not isinstance(vec, cvx.spmatrix):
vec = cvx.sparse(vec)
I = []
J = []
V = []
for i, v in zip(vec.I, vec.V):
c = int(np.sqrt(1 + 8 * i) - 1) // 2
r = i - c * (c + 1) // 2
I.append(r)
J.append(c)
if r == c:
V.append(v)
else:
if triu:
V.append(v / np.sqrt(2))
else:
I.append(c)
J.append(r)
V.extend([v / np.sqrt(2)] * 2)
return spmatrix(V, I, J, (n, n))
示例6: _utri
# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import sparse [as 別名]
def _utri(mat):
"""
return elements of the (strict) upper triangular part of a cvxopt matrix
"""
m, n = mat.size
if m != n:
raise ValueError('mat must be square')
v = []
for j in range(1, n):
for i in range(j):
v.append(mat[i, j])
return cvx.sparse(v)
示例7: __init__
# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import sparse [as 別名]
def __init__(self, dim, n_labels, mode=1):
self.mode = mode
self.dim = dim
self.n_labels = n_labels
if mode == 1:
self.P = spmatrix(1, range(dim * n_labels), range(dim * n_labels))
glast = matrix(np.ones((1, dim * n_labels)))
self.G = sparse([-self.P, self.P, glast])
h1 = np.zeros(dim * n_labels)
h2 = np.ones(dim * n_labels)
self.h = matrix(np.concatenate([h1, h2, [dim]]))
elif mode == 2:
self.P = spmatrix(1, range(n_labels), range(n_labels))
glast = matrix(np.ones((1, n_labels)))
self.G = sparse([-self.P, self.P, glast])
h1 = np.zeros(n_labels)
h2 = np.ones(n_labels)
self.h = matrix(np.concatenate([h1, h2, [1]]))
elif mode == 3:
self.P = spmatrix(1, range(n_labels), range(n_labels))
self.A = matrix(np.ones((1, n_labels)))
self.G = sparse([-self.P, self.P])
h1 = np.zeros(n_labels)
h2 = np.ones(n_labels)
self.h = matrix(np.concatenate([h1, h2]))
self.b = matrix(np.ones(1))
示例8: diag
# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import sparse [as 別名]
def diag(exp, dim=1):
r"""
if ``exp`` is an affine expression of size (n,m),
``diag(exp,dim)`` returns a diagonal matrix of size ``dim*n*m`` :math:`\times` ``dim*n*m``,
with ``dim`` copies of the vectorized expression ``exp[:]`` on the diagonal.
In particular:
* when ``exp`` is scalar, ``diag(exp,n)`` returns a diagonal
matrix of size :math:`n \times n`, with all diagonal elements equal to ``exp``.
* when ``exp`` is a vector of size :math:`n`, ``diag(exp)`` returns the diagonal
matrix of size :math:`n \times n` with the vector ``exp`` on the diagonal
**Example**
>>> import picos as pic
>>> prob=pic.Problem()
>>> x=prob.add_variable('x',1)
>>> y=prob.add_variable('y',1)
>>> pic.tools.diag(x-y,4)
# (4 x 4)-affine expression: Diag(x -y) #
>>> pic.tools.diag(x//y)
# (2 x 2)-affine expression: Diag([x;y]) #
"""
from .expression import AffinExp
if not isinstance(exp, AffinExp):
mat, name = _retrieve_matrix(exp)
exp = AffinExp({}, constant=mat[:], size=mat.size, string=name)
(n, m) = exp.size
expcopy = AffinExp(exp.factors.copy(), exp.constant, exp.size,
exp.string)
idx = cvx.spdiag([1.] * dim * n * m)[:].I
for k in exp.factors.keys():
# ensure it's sparse
mat = cvx.sparse(expcopy.factors[k])
I, J, V = list(mat.I), list(mat.J), list(mat.V)
newI = []
for d in range(dim):
for i in I:
newI.append(idx[i + n * m * d])
expcopy.factors[k] = spmatrix(
V * dim, newI, J * dim, ((dim * n * m)**2, exp.factors[k].size[1]))
expcopy.constant = cvx.matrix(0., ((dim * n * m)**2, 1))
if not exp.constant is None:
for k, i in enumerate(idx):
expcopy.constant[i] = exp.constant[k % (n * m)]
expcopy._size = (dim * n * m, dim * n * m)
expcopy.string = 'Diag(' + exp.string + ')'
return expcopy
示例9: _cplx_vecmat_to_real_vecmat
# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import sparse [as 別名]
def _cplx_vecmat_to_real_vecmat(M, sym=True, times_i=False):
"""
if the columns of M are vectorizations of matrices of the form A +iB:
* if times_i is False (default), return vectorizations of the block matrix [A,-B;B,A]
otherwise, return vectorizations of the block matrix [-B,-A;A,-B]
* if sym=True, returns the columns with respect to the sym-vectorization of the variables of the LMI
"""
if not(isinstance(M, cvx.base.spmatrix) or isinstance(M, cvx.base.matrix)):
raise NameError('unexpected matrix type')
if times_i:
M = M * 1j
mm = M.size[0]
m = mm**0.5
if int(m) != m:
raise NameError('first dimension must be a perfect square')
m = int(m)
vv = []
if sym:
nn = M.size[1]
n = nn**0.5
if int(n) != n:
raise NameError('2d dimension must be a perfect square')
n = int(n)
for k in range(n * (n + 1) // 2):
j = int(np.sqrt(1 + 8 * k) - 1) // 2
i = k - j * (j + 1) // 2
if i == j:
v = M[:, n * i + i]
else:
i1 = n * i + j
i2 = n * j + i
v = (M[:, i1] + M[:, i2]) * (1. / (2**0.5))
vvv = _cplx_mat_to_real_mat(cvx.matrix(v, (m, m)))[:]
vv.append([vvv])
else:
for i in range(M.size[1]):
v = M[:, i]
A = cvx.matrix(v, (m, m))
vvv = _cplx_mat_to_real_mat(A)[:] # TODO 0.5*(A+A.H) instead ?
vv.append([vvv])
return cvx.sparse(vv)
示例10: __xor__
# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import sparse [as 別名]
def __xor__(self, fact):
"""hadamard (elementwise) product"""
selfcopy = self.copy()
if isinstance(fact, AffinExp):
if fact.isconstant():
fac, facString = cvx.sparse(fact.eval()), fact.string
else:
if self.isconstant():
return fact ^ self
else:
raise Exception('not implemented')
else:
fac, facString = _retrieve_matrix(fact, self.size[0])
if fac.size == (1, 1) and selfcopy.size[0] != 1:
fac = fac[0] * cvx.spdiag([1.] * selfcopy.size[0])
if self.size == (1, 1) and fac.size[1] != 1:
oldstring = selfcopy.string
selfcopy = selfcopy.diag(fac.size[1])
selfcopy.string = oldstring
if selfcopy.size[0] != fac.size[0] or selfcopy.size[1] != fac.size[1]:
raise Exception('incompatible dimensions')
mm, nn = selfcopy.size
bfac = spmatrix([], [], [], (mm * nn, mm * nn))
for i, j, v in zip(fac.I, fac.J, fac.V):
bfac[j * mm + i, j * mm + i] = v
for k in selfcopy.factors:
newfac = bfac * selfcopy.factors[k]
selfcopy.factors[k] = newfac
if selfcopy.constant is None:
newfac = None
else:
newfac = bfac * selfcopy.constant
selfcopy.constant = newfac
"""
#the following removes 'I' from the string when a matrix is multiplied
#by the identity. We leave the 'I' when the factor of identity is a scalar
if len(facString)>0:
if facString[-1]=='I' and (len(facString)==1
or facString[-2].isdigit() or facString[-2]=='.') and (
self.size != (1,1)):
facString=facString[:-1]
"""
sstring = selfcopy.affstring()
if len(facString) > 0:
if ('+' in sstring) or ('-' in sstring):
sstring = '( ' + sstring + ' )'
if ('+' in facString) or ('-' in facString):
facString = '( ' + facString + ' )'
selfcopy.string = facString + '∘' + sstring
return selfcopy
示例11: __rshift__
# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import sparse [as 別名]
def __rshift__(self, exp):
if isinstance(exp, AffinExp):
n = exp.size[0] * exp.size[1]
if self.truncated:
if self.nonneg:
if self.radius <= 1:
aff = (-exp[:]) // (1 | exp[:])
rhs = cvx.sparse([0] * n + [self.radius])
if self.radius == 1:
simptext = ' in standard simplex'
else:
simptext = ' in simplex of radius ' + \
str(self.radius)
else:
aff = (exp[:]) // (-exp[:]) // (1 | exp[:])
rhs = cvx.sparse([1] * n + [0] * n + [self.radius])
simptext = ' in truncated simplex of radius ' + \
str(self.radius)
cons = (aff <= rhs)
cons.myconstring = exp.string + simptext
else:
from .problem import Problem
Ptmp = Problem()
v = Ptmp.add_variable('v', n)
Ptmp.add_constraint(exp[:] < v)
Ptmp.add_constraint(-exp[:] < v)
Ptmp.add_constraint((1 | v) < self.radius)
if self.radius > 1:
Ptmp.add_constraint(v < 1)
constring = '||' + exp.string + \
'||_{infty;1} <= {1;' + str(self.radius) + '}'
cons = Sym_Trunc_Simplex_Constraint(
exp, self.radius, Ptmp, constring)
else:
if self.nonneg:
aff = (-exp[:]) // (1 | exp[:])
rhs = cvx.sparse([0] * n + [self.radius])
cons = (aff <= rhs)
if self.radius == 1:
cons.myconstring = exp.string + ' in standard simplex'
else:
cons.myconstring = exp.string + \
' in simplex of radius ' + str(self.radius)
else:
cons = norm(exp, 1) < self.radius
return cons
else: # constant
term, termString = _retrieve_matrix(exp, None)
exp2 = AffinExp(
factors={},
constant=term[:],
size=term.size,
string=termString)
return self >> exp2