當前位置: 首頁>>代碼示例>>Python>>正文


Python cvxopt.sparse方法代碼示例

本文整理匯總了Python中cvxopt.sparse方法的典型用法代碼示例。如果您正苦於以下問題:Python cvxopt.sparse方法的具體用法?Python cvxopt.sparse怎麽用?Python cvxopt.sparse使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在cvxopt的用法示例。


在下文中一共展示了cvxopt.sparse方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _blocdiag

# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import sparse [as 別名]
def _blocdiag(X, n):
    """
    makes diagonal blocs of X, for indices in [sub1,sub2[
    n indicates the total number of blocks (horizontally)
    """
    if not isinstance(X, cvx.base.spmatrix):
        X = cvx.sparse(X)
    if n==1:
        return X
    else:
        Z = spmatrix([],[],[],X.size)
        mat = []
        for i in range(n):
            col = [Z]*(n-1)
            col.insert(i,X)
            mat.append(col)
        return cvx.sparse(mat) 
開發者ID:gsagnol,項目名稱:picos,代碼行數:19,代碼來源:tools.py

示例2: __init__

# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import sparse [as 別名]
def __init__(self, fun, Exp, funstring):
        Expression.__init__(self, self.funstring + '( ' + Exp.string + ')')
        self.fun = fun
        r"""The function ``f`` applied to the affine expression.
                This function must take in argument a
                :func:`cvxopt sparse matrix <cvxopt:cvxopt.spmatrix>` ``X``.
                Moreover, the call ``fx,grad,hess=f(X)``
                must return the function value :math:`f(X)` in ``fx``,
                the gradient :math:`\nabla f(X)` in the
                :func:`cvxopt matrix <cvxopt:cvxopt.matrix>` ``grad``,
                and the Hessian :math:`\nabla^2 f(X)` in the
                :func:`cvxopt sparse matrix <cvxopt:cvxopt.spmatrix>` ``hess``.
                """
        self.Exp = Exp
        """The affine expression to which the function is applied"""
        self.funstring = funstring
        """a string representation of the function name"""
        #self.string=self.funstring+'( '+self.Exp.affstring()+' )' 
開發者ID:gsagnol,項目名稱:picos,代碼行數:20,代碼來源:expression.py

示例3: _get_projector

# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import sparse [as 別名]
def _get_projector(R, N_ex):  # !
    # Projection
    dim = N_ex
    P = spmatrix(1, range(dim), range(dim))
    glast = matrix(np.ones((1, dim)))
    G = sparse([-P, P, glast])
    h1 = np.zeros(dim)
    h2 = np.ones(dim)
    h = matrix(np.concatenate([h1, h2, [R]]))

    def _project(pt):
        print('start projection')
        # pt = gamma.eval()
        q = matrix(- np.array(pt, dtype=np.float64))
        # if np.linalg.norm(pt, ord=1) < R:
        #    return
        _res = cvxopt.solvers.qp(P, q, G, h, initvals=q)
        _resx = np.array(_res['x'], dtype=np.float32)[:, 0]
        # gamma_assign.eval(feed_dict={grad_hyper: _resx})
        return _resx

    return _project


# TODO check the following functions (look right) 
開發者ID:lucfra,項目名稱:RFHO,代碼行數:27,代碼來源:data_hypercleaner.py

示例4: svec

# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import sparse [as 別名]
def svec(mat, ignore_sym=False):
    """
    returns the svec representation of the cvx matrix ``mat``.
    (see `Dattorro, ch.2.2.2.1 <http://meboo.convexoptimization.com/Meboo.html>`_)

    If ``ignore_sym = False`` (default), the function raises an Exception if ``mat`` is not symmetric.
    Otherwise, elements in the lower triangle of ``mat`` are simply ignored.
    """
    if not isinstance(mat, cvx.spmatrix):
        mat = cvx.sparse(mat)

    s0 = mat.size[0]
    if s0 != mat.size[1]:
        raise ValueError('mat must be square')

    I = []
    J = []
    V = []
    for (i, j, v) in zip((mat.I), (mat.J), (mat.V)):
        if not ignore_sym:
            if abs(mat[j, i] - v) > 1e-6:
                raise ValueError('mat must be symmetric')
        if i <= j:
            isvec = j * (j + 1) // 2 + i
            J.append(0)
            I.append(isvec)
            if i == j:
                V.append(v)
            else:
                V.append(np.sqrt(2) * v)

    return spmatrix(V, I, J, (s0 * (s0 + 1) // 2, 1)) 
開發者ID:gsagnol,項目名稱:picos,代碼行數:34,代碼來源:tools.py

示例5: svecm1

# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import sparse [as 別名]
def svecm1(vec, triu=False):
    if vec.size[1] > 1:
        raise ValueError('should be a column vector')
    v = vec.size[0]
    n = int(np.sqrt(1 + 8 * v) - 1) // 2
    if n * (n + 1) // 2 != v:
        raise ValueError('vec should be of dimension n(n+1)/2')
    if not isinstance(vec, cvx.spmatrix):
        vec = cvx.sparse(vec)
    I = []
    J = []
    V = []
    for i, v in zip(vec.I, vec.V):
        c = int(np.sqrt(1 + 8 * i) - 1) // 2
        r = i - c * (c + 1) // 2
        I.append(r)
        J.append(c)
        if r == c:
            V.append(v)
        else:
            if triu:
                V.append(v / np.sqrt(2))
            else:
                I.append(c)
                J.append(r)
                V.extend([v / np.sqrt(2)] * 2)
    return spmatrix(V, I, J, (n, n)) 
開發者ID:gsagnol,項目名稱:picos,代碼行數:29,代碼來源:tools.py

示例6: _utri

# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import sparse [as 別名]
def _utri(mat):
    """
    return elements of the (strict) upper triangular part of a cvxopt matrix
    """
    m, n = mat.size
    if m != n:
        raise ValueError('mat must be square')
    v = []
    for j in range(1, n):
        for i in range(j):
            v.append(mat[i, j])
    return cvx.sparse(v) 
開發者ID:gsagnol,項目名稱:picos,代碼行數:14,代碼來源:tools.py

示例7: __init__

# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import sparse [as 別名]
def __init__(self, dim, n_labels, mode=1):
        self.mode = mode
        self.dim = dim
        self.n_labels = n_labels
        if mode == 1:
            self.P = spmatrix(1, range(dim * n_labels), range(dim * n_labels))

            glast = matrix(np.ones((1, dim * n_labels)))
            self.G = sparse([-self.P, self.P, glast])

            h1 = np.zeros(dim * n_labels)
            h2 = np.ones(dim * n_labels)
            self.h = matrix(np.concatenate([h1, h2, [dim]]))
        elif mode == 2:
            self.P = spmatrix(1, range(n_labels), range(n_labels))
            glast = matrix(np.ones((1, n_labels)))
            self.G = sparse([-self.P, self.P, glast])

            h1 = np.zeros(n_labels)
            h2 = np.ones(n_labels)
            self.h = matrix(np.concatenate([h1, h2, [1]]))
        elif mode == 3:
            self.P = spmatrix(1, range(n_labels), range(n_labels))
            self.A = matrix(np.ones((1, n_labels)))
            self.G = sparse([-self.P, self.P])

            h1 = np.zeros(n_labels)
            h2 = np.ones(n_labels)
            self.h = matrix(np.concatenate([h1, h2]))
            self.b = matrix(np.ones(1)) 
開發者ID:lucfra,項目名稱:RFHO,代碼行數:32,代碼來源:quadratic.py

示例8: diag

# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import sparse [as 別名]
def diag(exp, dim=1):
    r"""
    if ``exp`` is an affine expression of size (n,m),
    ``diag(exp,dim)`` returns a diagonal matrix of size ``dim*n*m`` :math:`\times` ``dim*n*m``,
    with ``dim`` copies of the vectorized expression ``exp[:]`` on the diagonal.

    In particular:

      * when ``exp`` is scalar, ``diag(exp,n)`` returns a diagonal
        matrix of size :math:`n \times n`, with all diagonal elements equal to ``exp``.

      * when ``exp`` is a vector of size :math:`n`, ``diag(exp)`` returns the diagonal
        matrix of size :math:`n \times n` with the vector ``exp`` on the diagonal


    **Example**

    >>> import picos as pic
    >>> prob=pic.Problem()
    >>> x=prob.add_variable('x',1)
    >>> y=prob.add_variable('y',1)
    >>> pic.tools.diag(x-y,4)
    # (4 x 4)-affine expression: Diag(x -y) #
    >>> pic.tools.diag(x//y)
    # (2 x 2)-affine expression: Diag([x;y]) #

    """
    from .expression import AffinExp
    if not isinstance(exp, AffinExp):
        mat, name = _retrieve_matrix(exp)
        exp = AffinExp({}, constant=mat[:], size=mat.size, string=name)
    (n, m) = exp.size
    expcopy = AffinExp(exp.factors.copy(), exp.constant, exp.size,
                       exp.string)
    idx = cvx.spdiag([1.] * dim * n * m)[:].I
    for k in exp.factors.keys():
        # ensure it's sparse
        mat = cvx.sparse(expcopy.factors[k])
        I, J, V = list(mat.I), list(mat.J), list(mat.V)
        newI = []
        for d in range(dim):
            for i in I:
                newI.append(idx[i + n * m * d])
        expcopy.factors[k] = spmatrix(
            V * dim, newI, J * dim, ((dim * n * m)**2, exp.factors[k].size[1]))
    expcopy.constant = cvx.matrix(0., ((dim * n * m)**2, 1))
    if not exp.constant is None:
        for k, i in enumerate(idx):
            expcopy.constant[i] = exp.constant[k % (n * m)]
    expcopy._size = (dim * n * m, dim * n * m)
    expcopy.string = 'Diag(' + exp.string + ')'
    return expcopy 
開發者ID:gsagnol,項目名稱:picos,代碼行數:54,代碼來源:tools.py

示例9: _cplx_vecmat_to_real_vecmat

# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import sparse [as 別名]
def _cplx_vecmat_to_real_vecmat(M, sym=True, times_i=False):
    """
    if the columns of M are vectorizations of matrices of the form A +iB:
    * if times_i is False (default), return vectorizations of the block matrix [A,-B;B,A]
      otherwise, return vectorizations of the block matrix [-B,-A;A,-B]
    * if sym=True, returns the columns with respect to the sym-vectorization of the variables of the LMI
    """
    if not(isinstance(M, cvx.base.spmatrix) or isinstance(M, cvx.base.matrix)):
        raise NameError('unexpected matrix type')

    if times_i:
        M = M * 1j

    mm = M.size[0]
    m = mm**0.5
    if int(m) != m:
        raise NameError('first dimension must be a perfect square')
    m = int(m)

    vv = []
    if sym:
        nn = M.size[1]
        n = nn**0.5
        if int(n) != n:
            raise NameError('2d dimension must be a perfect square')
        n = int(n)

        for k in range(n * (n + 1) // 2):
            j = int(np.sqrt(1 + 8 * k) - 1) // 2
            i = k - j * (j + 1) // 2
            if i == j:
                v = M[:, n * i + i]
            else:
                i1 = n * i + j
                i2 = n * j + i
                v = (M[:, i1] + M[:, i2]) * (1. / (2**0.5))
            vvv = _cplx_mat_to_real_mat(cvx.matrix(v, (m, m)))[:]
            vv.append([vvv])

    else:
        for i in range(M.size[1]):
            v = M[:, i]
            A = cvx.matrix(v, (m, m))
            vvv = _cplx_mat_to_real_mat(A)[:]  # TODO 0.5*(A+A.H) instead ?
            vv.append([vvv])

    return cvx.sparse(vv) 
開發者ID:gsagnol,項目名稱:picos,代碼行數:49,代碼來源:tools.py

示例10: __xor__

# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import sparse [as 別名]
def __xor__(self, fact):
        """hadamard (elementwise) product"""
        selfcopy = self.copy()
        if isinstance(fact, AffinExp):
            if fact.isconstant():
                fac, facString = cvx.sparse(fact.eval()), fact.string
            else:
                if self.isconstant():
                    return fact ^ self
                else:
                    raise Exception('not implemented')
        else:
            fac, facString = _retrieve_matrix(fact, self.size[0])
        if fac.size == (1, 1) and selfcopy.size[0] != 1:
            fac = fac[0] * cvx.spdiag([1.] * selfcopy.size[0])
        if self.size == (1, 1) and fac.size[1] != 1:
            oldstring = selfcopy.string
            selfcopy = selfcopy.diag(fac.size[1])
            selfcopy.string = oldstring
        if selfcopy.size[0] != fac.size[0] or selfcopy.size[1] != fac.size[1]:
            raise Exception('incompatible dimensions')
        mm, nn = selfcopy.size
        bfac = spmatrix([], [], [], (mm * nn, mm * nn))
        for i, j, v in zip(fac.I, fac.J, fac.V):
            bfac[j * mm + i, j * mm + i] = v
        for k in selfcopy.factors:
            newfac = bfac * selfcopy.factors[k]
            selfcopy.factors[k] = newfac
        if selfcopy.constant is None:
            newfac = None
        else:
            newfac = bfac * selfcopy.constant
        selfcopy.constant = newfac
        """
                #the following removes 'I' from the string when a matrix is multiplied
                #by the identity. We leave the 'I' when the factor of identity is a scalar
                if len(facString)>0:
                        if facString[-1]=='I' and (len(facString)==1
                                 or facString[-2].isdigit() or facString[-2]=='.') and (
                                 self.size != (1,1)):
                                facString=facString[:-1]
		"""
        sstring = selfcopy.affstring()
        if len(facString) > 0:
            if ('+' in sstring) or ('-' in sstring):
                sstring = '( ' + sstring + ' )'
            if ('+' in facString) or ('-' in facString):
                facString = '( ' + facString + ' )'

            selfcopy.string = facString + '∘' + sstring

        return selfcopy 
開發者ID:gsagnol,項目名稱:picos,代碼行數:54,代碼來源:expression.py

示例11: __rshift__

# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import sparse [as 別名]
def __rshift__(self, exp):

        if isinstance(exp, AffinExp):
            n = exp.size[0] * exp.size[1]
            if self.truncated:
                if self.nonneg:
                    if self.radius <= 1:
                        aff = (-exp[:]) // (1 | exp[:])
                        rhs = cvx.sparse([0] * n + [self.radius])
                        if self.radius == 1:
                            simptext = ' in standard simplex'
                        else:
                            simptext = ' in simplex of radius ' + \
                                str(self.radius)
                    else:
                        aff = (exp[:]) // (-exp[:]) // (1 | exp[:])
                        rhs = cvx.sparse([1] * n + [0] * n + [self.radius])
                        simptext = ' in truncated simplex of radius ' + \
                            str(self.radius)
                    cons = (aff <= rhs)
                    cons.myconstring = exp.string + simptext
                else:
                    from .problem import Problem
                    Ptmp = Problem()
                    v = Ptmp.add_variable('v', n)
                    Ptmp.add_constraint(exp[:] < v)
                    Ptmp.add_constraint(-exp[:] < v)
                    Ptmp.add_constraint((1 | v) < self.radius)
                    if self.radius > 1:
                        Ptmp.add_constraint(v < 1)
                    constring = '||' + exp.string + \
                        '||_{infty;1} <= {1;' + str(self.radius) + '}'
                    cons = Sym_Trunc_Simplex_Constraint(
                        exp, self.radius, Ptmp, constring)
            else:
                if self.nonneg:
                    aff = (-exp[:]) // (1 | exp[:])
                    rhs = cvx.sparse([0] * n + [self.radius])
                    cons = (aff <= rhs)
                    if self.radius == 1:
                        cons.myconstring = exp.string + ' in standard simplex'
                    else:
                        cons.myconstring = exp.string + \
                            ' in simplex of radius ' + str(self.radius)
                else:
                    cons = norm(exp, 1) < self.radius
            return cons
        else:  # constant
            term, termString = _retrieve_matrix(exp, None)
            exp2 = AffinExp(
                factors={},
                constant=term[:],
                size=term.size,
                string=termString)
            return self >> exp2 
開發者ID:gsagnol,項目名稱:picos,代碼行數:57,代碼來源:expression.py


注:本文中的cvxopt.sparse方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。