當前位置: 首頁>>代碼示例>>Python>>正文


Python cvxopt.matrix方法代碼示例

本文整理匯總了Python中cvxopt.matrix方法的典型用法代碼示例。如果您正苦於以下問題:Python cvxopt.matrix方法的具體用法?Python cvxopt.matrix怎麽用?Python cvxopt.matrix使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在cvxopt的用法示例。


在下文中一共展示了cvxopt.matrix方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: lk

# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import matrix [as 別名]
def lk(E=1.):
        """element stiffness matrix"""
        nu = 0.3
        k = np.array([0.5 - nu / 6., 0.125 + nu / 8., -0.25 - nu / 12.,
            -0.125 + 0.375 * nu, -0.25 + nu / 12., -0.125 - nu / 8., nu / 6.,
            0.125 - 0.375 * nu])
        KE = E / (1 - nu**2) * np.array([
            [k[0], k[1], k[2], k[3], k[4], k[5], k[6], k[7]],
            [k[1], k[0], k[7], k[6], k[5], k[4], k[3], k[2]],
            [k[2], k[7], k[0], k[5], k[6], k[3], k[4], k[1]],
            [k[3], k[6], k[5], k[0], k[7], k[2], k[1], k[4]],
            [k[4], k[5], k[6], k[7], k[0], k[1], k[2], k[3]],
            [k[5], k[4], k[3], k[2], k[1], k[0], k[7], k[6]],
            [k[6], k[3], k[4], k[1], k[2], k[7], k[0], k[5]],
            [k[7], k[2], k[1], k[4], k[3], k[6], k[5], k[0]]])
        return KE 
開發者ID:zfergus,項目名稱:fenics-topopt,代碼行數:18,代碼來源:problem.py

示例2: fit

# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import matrix [as 別名]
def fit(self, Xs, Xt):
        '''
        Fit source and target using KMM (compute the coefficients)
        :param Xs: ns * dim
        :param Xt: nt * dim
        :return: Coefficients (Pt / Ps) value vector (Beta in the paper)
        '''
        ns = Xs.shape[0]
        nt = Xt.shape[0]
        if self.eps == None:
            self.eps = self.B / np.sqrt(ns)
        K = kernel(self.kernel_type, Xs, None, self.gamma)
        kappa = np.sum(kernel(self.kernel_type, Xs, Xt, self.gamma) * float(ns) / float(nt), axis=1)

        K = matrix(K)
        kappa = matrix(kappa)
        G = matrix(np.r_[np.ones((1, ns)), -np.ones((1, ns)), np.eye(ns), -np.eye(ns)])
        h = matrix(np.r_[ns * (1 + self.eps), ns * (self.eps - 1), self.B * np.ones((ns,)), np.zeros((ns,))])

        sol = solvers.qp(K, -kappa, G, h)
        beta = np.array(sol['x'])
        return beta 
開發者ID:jindongwang,項目名稱:transferlearning,代碼行數:24,代碼來源:KMM.py

示例3: radius

# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import matrix [as 別名]
def radius(K):
    """evaluate the radius of the MEB (Minimum Enclosing Ball) of examples in
    feature space.

    Parameters
    ----------
    K : (n,n) ndarray,
        the kernel that represents the data.

    Returns
    -------
    r : np.float64,
        the radius of the minimum enclosing ball of examples in feature space.
    """
    K = validation.check_K(K).numpy()
    n = K.shape[0]
    P = 2 * matrix(K)
    p = -matrix(K.diagonal())
    G = -spdiag([1.0] * n)
    h = matrix([0.0] * n)
    A = matrix([1.0] * n).T
    b = matrix([1.0])
    solvers.options['show_progress']=False
    sol = solvers.qp(P,p,G,h,A,b)
    return abs(sol['primal objective'])**.5 
開發者ID:IvanoLauriola,項目名稱:MKLpy,代碼行數:27,代碼來源:evaluate.py

示例4: _update_grad

# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import matrix [as 別名]
def _update_grad(self,Kc, YY, beta, alpha, gamma):
        n = self.n_kernels
        
        eb = np.exp(beta)
        a,b = [], []
        gammaY = gamma['x'].T*YY
        for K in self.KL:   #optimized for generators
            K = matrix(K.numpy().astype(np.double))
            a.append( 1.-(alpha['x'].T*matrix(K)*alpha['x'])[0] )
            b.append( (gammaY*matrix(K)*gammaY.T)[0] )
        ebb, eba = np.dot(eb,b), np.dot(eb,a)
        den = np.dot(eb,b)**2
        num = [eb[r] * (a[r]*ebb - b[r]*eba) for r in range(n)]
        
        new_beta = np.array([beta[k] - self.learning_rate * (num[k]/den) for k in range(n)])
        return new_beta 
開發者ID:IvanoLauriola,項目名稱:MKLpy,代碼行數:18,代碼來源:GRAM.py

示例5: cvxopt_matrix

# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import matrix [as 別名]
def cvxopt_matrix(M):
    """
    Convert matrix to CVXOPT format.

    Parameters
    ----------
    M : numpy.array
        Matrix in NumPy format.

    Returns
    -------
    N : cvxopt.matrix
        Matrix in CVXOPT format.
    """
    if type(M) is ndarray:
        return matrix(M)
    elif type(M) is spmatrix or type(M) is matrix:
        return M
    coo = M.tocoo()
    return spmatrix(
        coo.data.tolist(), coo.row.tolist(), coo.col.tolist(), size=M.shape) 
開發者ID:stephane-caron,項目名稱:qpsolvers,代碼行數:23,代碼來源:cvxopt_.py

示例6: projection_in_norm

# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import matrix [as 別名]
def projection_in_norm(self, x, M):
        """
        Projection of x to simplex induced by matrix M. Uses quadratic programming.
        """
        m = M.shape[0]

        # Constrains matrices
        P = opt.matrix(2 * M)
        q = opt.matrix(-2 * M * x)
        G = opt.matrix(-np.eye(m))
        h = opt.matrix(np.zeros((m, 1)))
        A = opt.matrix(np.ones((1, m)))
        b = opt.matrix(1.)

        # Solve using quadratic programming
        sol = opt.solvers.qp(P, q, G, h, A, b)
        return np.squeeze(sol['x']) 
開發者ID:naripok,項目名稱:cryptotrader,代碼行數:19,代碼來源:apriori.py

示例7: rebalance

# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import matrix [as 別名]
def rebalance(self, obs):
        """
        Performs portfolio rebalance within environment
        :param obs: pandas DataFrame: Environment observation
        :return: numpy array: Portfolio vector
        """
        n_pairs = obs.columns.levels[0].shape[0]
        if self.step:
            prev_posit = self.get_portfolio_vector(obs, index=self.reb)
            price_relative = self.predict(obs)
            return self.update(prev_posit, price_relative)
        else:
            action = np.ones(n_pairs)
            action[-1] = 0
            self.sigma = np.matrix(np.eye(n_pairs) / n_pairs ** 2)
            return array_normalize(action) 
開發者ID:naripok,項目名稱:cryptotrader,代碼行數:18,代碼來源:apriori.py

示例8: decide_by_history

# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import matrix [as 別名]
def decide_by_history(self, x, last_b):
        '''
        :param x: input matrix
        :param last_b: last portfolio
        '''
        x = self.get_last_rpv(x)
        if self.A is None:
            self.init_portfolio(x)

        # calculate gradient
        grad = np.mat(x / np.dot(last_b, x)).T
        # update A
        self.A += grad * grad.T
        # update b
        self.b += (1 + 1./self.beta) * grad

        # projection of p induced by norm A
        pp = self.projection_in_norm(self.delta * self.A.I * self.b, self.A)
        return pp * (1 - self.eta) + np.ones(len(x)) / float(len(x)) * self.eta 
開發者ID:ZhengyaoJiang,項目名稱:PGPortfolio,代碼行數:21,代碼來源:ons.py

示例9: calculateA

# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import matrix [as 別名]
def calculateA(input_,label,C,K):          #using cvxopt bag figure out the convex quadratic programming
    num = input_.shape[0]
    P = cvxopt.matrix(numpy.outer(label,label)*K)
    q = cvxopt.matrix(numpy.ones(num)*-1)
    A = cvxopt.matrix(label,(1,num))
    b = cvxopt.matrix(0.0)
    
    if C is None:
        G = cvxopt.matrix(numpy.diag(numpy.ones(num)*-1))
        h = cvxopt.matrix(numpy.zeros(num))
    else:
        temp1 = numpy.diag(numpy.ones(num)*-1)
        temp2 = bp.identity(num)
        G = cvxopt.matrix(numpy.vstack(temp1,temp2))
        temp1 = numpy.zeros(num)
        temp2 = numpy.ones(num)*self.C
        h = cvxopt.matrix(numpy.hstack(temp1,temp2))        #P\q\A\b\G\h are parameters of cvxopt.solvers.qp() function

    solution = cvxopt.solvers.qp(P,q,G,h,A,b)               #figure out the model
    
    a = numpy.ravel(solution['x'])      #transfer the 'a' into a vector
    return a 
開發者ID:LiangjunFeng,項目名稱:Machine-Learning,代碼行數:24,代碼來源:4.Support_vector_machine.py

示例10: _QP

# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import matrix [as 別名]
def _QP(self, x, y):
        # In QP formulation (dual): m variables, 2m+1 constraints (1 equation, 2m inequations)
        m = len(y)
        print x.shape, y.shape
        P = self._kernel(x) * np.outer(y, y)
        P, q = matrix(P, tc='d'), matrix(-np.ones((m, 1)), tc='d')
        G = matrix(np.r_[-np.eye(m), np.eye(m)], tc='d')
        h = matrix(np.r_[np.zeros((m,1)), np.zeros((m,1)) + self.C], tc='d')
        A, b = matrix(y.reshape((1,-1)), tc='d'), matrix([0.0])
        # print "P, q:"
        # print P, q
        # print "G, h"
        # print G, h
        # print "A, b"
        # print A, b
        solution = solvers.qp(P, q, G, h, A, b)
        if solution['status'] == 'unknown':
            print 'Not PSD!'
            exit(2)
        else:
            self.alphas = np.array(solution['x']).squeeze() 
開發者ID:soloice,項目名稱:SVM-python,代碼行數:23,代碼來源:svm.py

示例11: min_singular

# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import matrix [as 別名]
def min_singular(forces, torques, normals, soft_fingers=False, params=None):
        """ Min singular value of grasp matrix - measure of wrench that grasp is "weakest" at resisting.

        Parameters
        ----------
        forces : 3xN :obj:`numpy.ndarray`
            set of forces on object in object basis
        torques : 3xN :obj:`numpy.ndarray`
            set of torques on object in object basis
        normals : 3xN :obj:`numpy.ndarray`
            surface normals at the contact points
        soft_fingers : bool
            whether or not to use the soft finger contact model
        params : :obj:`GraspQualityConfig`
            set of parameters for grasp matrix and contact model

        Returns
        -------
        float : value of smallest singular value
        """
        G = PointGraspMetrics3D.grasp_matrix(forces, torques, normals, soft_fingers)
        _, S, _ = np.linalg.svd(G)
        min_sig = S[5]
        return min_sig 
開發者ID:lianghongzhuo,項目名稱:PointNetGPD,代碼行數:26,代碼來源:quality.py

示例12: test_ilp

# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import matrix [as 別名]
def test_ilp():
    """
    Problem defined in:
        https://en.wikipedia.org/wiki/Integer_programming#Example
    Solution from:
        https://stackoverflow.com/questions/33785396/python-the-integer-linear-programming-ilp-function-in-cvxopt-is-not-generati
    """
    import cvxopt
    from cvxopt import glpk

    glpk.options['msg_lev'] = 'GLP_MSG_OFF'
    c = cvxopt.matrix([0, -1], tc='d')
    G = cvxopt.matrix([[-1, 1], [3, 2], [2, 3], [-1, 0], [0, -1]], tc='d')
    h = cvxopt.matrix([1, 12, 12, 0, 0], tc='d')
    (status, x) = cvxopt.glpk.ilp(c, G.T, h, I=set([0, 1]))
    print (status)
    print ("%s, %s" % (str(x[0]), str(x[1])))
    print (sum(c.T * x)) 
開發者ID:shubhomoydas,項目名稱:ad_examples,代碼行數:20,代碼來源:aad_test_support.py

示例13: __init__

# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import matrix [as 別名]
def __init__(self, x, y, model, opts, sample_negative=False):
        """

        :param x: np.ndarray
            The instance matrix with ALL instances
        :param y: np.array
        :param model: Aad
        :param opts: AadOpts
        :param sample_negative: bool
        """
        self.x = x
        self.y = y
        self.model = model
        self.opts = opts
        self.sample_negative = sample_negative

        self.meta = None 
開發者ID:shubhomoydas,項目名稱:ad_examples,代碼行數:19,代碼來源:forest_description.py

示例14: _computeReward

# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import matrix [as 別名]
def _computeReward(self, reward, transition):
        # Compute the reward for the system in one state chosing an action.
        # Arguments
        # Let S = number of states, A = number of actions
        # P could be an array with 3 dimensions or  a cell array (1xA),
        # each cell containing a matrix (SxS) possibly sparse
        # R could be an array with 3 dimensions (SxSxA) or  a cell array
        # (1xA), each cell containing a sparse matrix (SxS) or a 2D
        # array(SxA) possibly sparse
        try:
            if reward.ndim == 1:
                return self._computeVectorReward(reward)
            elif reward.ndim == 2:
                return self._computeArrayReward(reward)
            else:
                r = tuple(map(self._computeMatrixReward, reward, transition))
                return r
        except (AttributeError, ValueError):
            if len(reward) == self.A:
                r = tuple(map(self._computeMatrixReward, reward, transition))
                return r
            else:
                return self._computeVectorReward(reward) 
開發者ID:sawcordwell,項目名稱:pymdptoolbox,代碼行數:25,代碼來源:mdp.py

示例15: __init__

# 需要導入模塊: import cvxopt [as 別名]
# 或者: from cvxopt import matrix [as 別名]
def __init__(self, transitions, reward, discount, skip_check=False):
        # Initialise a linear programming MDP.
        # import some functions from cvxopt and set them as object methods
        try:
            from cvxopt import matrix, solvers
            self._linprog = solvers.lp
            self._cvxmat = matrix
        except ImportError:
            raise ImportError("The python module cvxopt is required to use "
                              "linear programming functionality.")
        # initialise the MDP. epsilon and max_iter are not needed
        MDP.__init__(self, transitions, reward, discount, None, None,
                     skip_check=skip_check)
        # Set the cvxopt solver to be quiet by default, but ...
        # this doesn't do what I want it to do c.f. issue #3
        if not self.verbose:
            solvers.options['show_progress'] = False 
開發者ID:sawcordwell,項目名稱:pymdptoolbox,代碼行數:19,代碼來源:mdp.py


注:本文中的cvxopt.matrix方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。