本文整理匯總了Python中cv2.waitKey方法的典型用法代碼示例。如果您正苦於以下問題:Python cv2.waitKey方法的具體用法?Python cv2.waitKey怎麽用?Python cv2.waitKey使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類cv2
的用法示例。
在下文中一共展示了cv2.waitKey方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _lapulaseDetection
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import waitKey [as 別名]
def _lapulaseDetection(self, imgName):
"""
:param strdir: 文件所在的目錄
:param name: 文件名稱
:return: 檢測模糊後的分數
"""
# step1: 預處理
img2gray, reImg = self.preImgOps(imgName)
# step2: laplacian算子 獲取評分
resLap = cv2.Laplacian(img2gray, cv2.CV_64F)
score = resLap.var()
print("Laplacian %s score of given image is %s", str(score))
# strp3: 繪製圖片並保存 不應該寫在這裏 抽象出來 這是共有的部分
newImg = self._drawImgFonts(reImg, str(score))
newDir = self.strDir + "/_lapulaseDetection_/"
if not os.path.exists(newDir):
os.makedirs(newDir)
newPath = newDir + imgName
# 顯示
cv2.imwrite(newPath, newImg) # 保存圖片
cv2.imshow(imgName, newImg)
cv2.waitKey(0)
# step3: 返回分數
return score
示例2: run
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import waitKey [as 別名]
def run(self):
print("VEDIO server starts...")
self.sock.bind(self.ADDR)
self.sock.listen(1)
conn, addr = self.sock.accept()
print("remote VEDIO client success connected...")
data = "".encode("utf-8")
payload_size = struct.calcsize("L")
cv2.namedWindow('Remote', cv2.WINDOW_AUTOSIZE)
while True:
while len(data) < payload_size:
data += conn.recv(81920)
packed_size = data[:payload_size]
data = data[payload_size:]
msg_size = struct.unpack("L", packed_size)[0]
while len(data) < msg_size:
data += conn.recv(81920)
zframe_data = data[:msg_size]
data = data[msg_size:]
frame_data = zlib.decompress(zframe_data)
frame = pickle.loads(frame_data)
cv2.imshow('Remote', frame)
if cv2.waitKey(1) & 0xFF == 27:
break
示例3: __get_annotation__
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import waitKey [as 別名]
def __get_annotation__(self, mask, image=None):
_, contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
segmentation = []
for contour in contours:
# Valid polygons have >= 6 coordinates (3 points)
if contour.size >= 6:
segmentation.append(contour.flatten().tolist())
RLEs = cocomask.frPyObjects(segmentation, mask.shape[0], mask.shape[1])
RLE = cocomask.merge(RLEs)
# RLE = cocomask.encode(np.asfortranarray(mask))
area = cocomask.area(RLE)
[x, y, w, h] = cv2.boundingRect(mask)
if image is not None:
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
cv2.drawContours(image, contours, -1, (0,255,0), 1)
cv2.rectangle(image,(x,y),(x+w,y+h), (255,0,0), 2)
cv2.imshow("", image)
cv2.waitKey(1)
return segmentation, [x, y, w, h], area
示例4: main
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import waitKey [as 別名]
def main():
args = parse_args()
device = torch.device(args.device)
model = init_detector(args.config, args.checkpoint, device=device)
camera = cv2.VideoCapture(args.camera_id)
print('Press "Esc", "q" or "Q" to exit.')
while True:
ret_val, img = camera.read()
result = inference_detector(model, img)
ch = cv2.waitKey(1)
if ch == 27 or ch == ord('q') or ch == ord('Q'):
break
model.show_result(
img, result, score_thr=args.score_thr, wait_time=1, show=True)
示例5: processFrames
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import waitKey [as 別名]
def processFrames(self):
try:
for img in self.anotations_list:
img = img.split(';')
# print(img)
# ret,imgcv = cap.read()
if self.video:
ret,imgcv = self.cap.read()
else:
imgcv = cv2.imread(os.path.join('../',self.config["dataset"],img[0]))
result = self.tfnet.return_predict(imgcv)
print(result)
imgcv = self.drawBoundingBox(imgcv,result)
cv2.imshow('detected objects',imgcv)
if cv2.waitKey(10) == ord('q'):
print('exitting loop')
break
except KeyboardInterrupt:
cv2.destroyAllWindows()
print('exitting program')
示例6: show
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import waitKey [as 別名]
def show(im, allobj, S, w, h, cellx, celly):
for obj in allobj:
a = obj[5] % S
b = obj[5] // S
cx = a + obj[1]
cy = b + obj[2]
centerx = cx * cellx
centery = cy * celly
ww = obj[3]**2 * w
hh = obj[4]**2 * h
cv2.rectangle(im,
(int(centerx - ww/2), int(centery - hh/2)),
(int(centerx + ww/2), int(centery + hh/2)),
(0,0,255), 2)
cv2.imshow('result', im)
cv2.waitKey()
cv2.destroyAllWindows()
示例7: __next__
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import waitKey [as 別名]
def __next__(self):
self.count += 1
img0 = self.imgs.copy()
if cv2.waitKey(1) == ord('q'): # q to quit
cv2.destroyAllWindows()
raise StopIteration
# Letterbox
img = [letterbox(x, new_shape=self.img_size, interp=cv2.INTER_LINEAR)[0] for x in img0]
# Stack
img = np.stack(img, 0)
# Normalize RGB
img = img[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB
img = np.ascontiguousarray(img, dtype=np.float16 if self.half else np.float32) # uint8 to fp16/fp32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
return self.sources, img, img0, None
示例8: _blurDetection
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import waitKey [as 別名]
def _blurDetection(self, imgName):
# step 1 圖像的預處理
img2gray, reImg = self.preImgOps(imgName)
imgMat=self._imageToMatrix(img2gray)/255.0
x, y = imgMat.shape
score = 0
for i in range(x - 2):
for j in range(y - 2):
score += (imgMat[i + 2, j] - imgMat[i, j]) ** 2
# step3: 繪製圖片並保存 不應該寫在這裏 抽象出來 這是共有的部分
score=score/10
newImg = self._drawImgFonts(reImg, str(score))
newDir = self.strDir + "/_blurDetection_/"
if not os.path.exists(newDir):
os.makedirs(newDir)
newPath = newDir + imgName
cv2.imwrite(newPath, newImg) # 保存圖片
cv2.imshow(imgName, newImg)
cv2.waitKey(0)
return score
示例9: _SMDDetection
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import waitKey [as 別名]
def _SMDDetection(self, imgName):
# step 1 圖像的預處理
img2gray, reImg = self.preImgOps(imgName)
f=self._imageToMatrix(img2gray)/255.0
x, y = f.shape
score = 0
for i in range(x - 1):
for j in range(y - 1):
score += np.abs(f[i+1,j]-f[i,j])+np.abs(f[i,j]-f[i+1,j])
# strp3: 繪製圖片並保存 不應該寫在這裏 抽象出來 這是共有的部分
score=score/100
newImg = self._drawImgFonts(reImg, str(score))
newDir = self.strDir + "/_SMDDetection_/"
if not os.path.exists(newDir):
os.makedirs(newDir)
newPath = newDir + imgName
cv2.imwrite(newPath, newImg) # 保存圖片
cv2.imshow(imgName, newImg)
cv2.waitKey(0)
return score
示例10: _SMD2Detection
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import waitKey [as 別名]
def _SMD2Detection(self, imgName):
"""
灰度方差乘積
:param imgName:
:return:
"""
# step 1 圖像的預處理
img2gray, reImg = self.preImgOps(imgName)
f=self._imageToMatrix(img2gray)/255.0
x, y = f.shape
score = 0
for i in range(x - 1):
for j in range(y - 1):
score += np.abs(f[i+1,j]-f[i,j])*np.abs(f[i,j]-f[i,j+1])
# strp3: 繪製圖片並保存 不應該寫在這裏 抽象出來 這是共有的部分
score=score
newImg = self._drawImgFonts(reImg, str(score))
newDir = self.strDir + "/_SMD2Detection_/"
if not os.path.exists(newDir):
os.makedirs(newDir)
newPath = newDir + imgName
cv2.imwrite(newPath, newImg) # 保存圖片
cv2.imshow(imgName, newImg)
cv2.waitKey(0)
return score
示例11: _Variance
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import waitKey [as 別名]
def _Variance(self, imgName):
"""
灰度方差乘積
:param imgName:
:return:
"""
# step 1 圖像的預處理
img2gray, reImg = self.preImgOps(imgName)
f = self._imageToMatrix(img2gray)
# strp3: 繪製圖片並保存 不應該寫在這裏 抽象出來 這是共有的部分
score = np.var(f)
newImg = self._drawImgFonts(reImg, str(score))
newDir = self.strDir + "/_Variance_/"
if not os.path.exists(newDir):
os.makedirs(newDir)
newPath = newDir + imgName
cv2.imwrite(newPath, newImg) # 保存圖片
cv2.imshow(imgName, newImg)
cv2.waitKey(0)
return score
示例12: detect
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import waitKey [as 別名]
def detect(imgfile):
origimg = cv2.imread(imgfile)
img = preprocess(origimg)
img = img.astype(np.float32)
img = img.transpose((2, 0, 1))
net.blobs['data'].data[...] = img
out = net.forward()
box, conf, cls = postprocess(origimg, out)
for i in range(len(box)):
p1 = (box[i][0], box[i][1])
p2 = (box[i][2], box[i][3])
cv2.rectangle(origimg, p1, p2, (0,255,0))
p3 = (max(p1[0], 15), max(p1[1], 15))
title = "%s:%.2f" % (COCO_CLASSES[int(cls[i])], conf[i])
cv2.putText(origimg, title, p3, cv2.FONT_ITALIC, 0.6, (0, 255, 0), 1)
cv2.imshow("SSD", origimg)
k = cv2.waitKey(0) & 0xff
#Exit if ESC pressed
if k == 27 : return False
return True
示例13: detect
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import waitKey [as 別名]
def detect(imgfile):
origimg = cv2.imread(imgfile)
img = preprocess(origimg)
img = img.astype(np.float32)
img = img.transpose((2, 0, 1))
net.blobs['data'].data[...] = img
out = net.forward()
box, conf, cls = postprocess(origimg, out)
for i in range(len(box)):
p1 = (box[i][0], box[i][1])
p2 = (box[i][2], box[i][3])
cv2.rectangle(origimg, p1, p2, (0,255,0))
p3 = (max(p1[0], 15), max(p1[1], 15))
title = "%s:%.2f" % (CLASSES[int(cls[i])], conf[i])
cv2.putText(origimg, title, p3, cv2.FONT_ITALIC, 0.6, (0, 255, 0), 1)
cv2.imshow("SSD", origimg)
k = cv2.waitKey(0) & 0xff
#Exit if ESC pressed
if k == 27 : return False
return True
示例14: live_undistort
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import waitKey [as 別名]
def live_undistort(camera, camera_matrix, distortion_coefficients):
""" Using a given calibration matrix, display the distorted, undistorted, and cropped frame"""
scaled_camera_matrix, roi = cv2.getOptimalNewCameraMatrix(
camera_matrix, distortion_coefficients, camera.size, 1, camera.size
)
while True:
ret, frame = camera.cap.read()
assert ret
distorted_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
undistorted_frame = cv2.undistort(
distorted_frame, camera_matrix, distortion_coefficients, None, scaled_camera_matrix,
)
roi_x, roi_y, roi_w, roi_h = roi
cropped_frame = undistorted_frame[roi_y : roi_y + roi_h, roi_x : roi_x + roi_w]
cv2.imshow("distorted %s" % (distorted_frame.shape,), distorted_frame)
cv2.imshow("undistorted %s" % (undistorted_frame.shape,), undistorted_frame)
cv2.imshow("cropped %s" % (cropped_frame.shape,), cropped_frame)
cv2.waitKey(10)
示例15: show_yuv_frame
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import waitKey [as 別名]
def show_yuv_frame(self, window_name, yuv_frame):
# the VideoFrame.info() dictionary contains some useful information
# such as the video resolution
info = yuv_frame.info()
height, width = info["yuv"]["height"], info["yuv"]["width"]
# yuv_frame.vmeta() returns a dictionary that contains additional
# metadata from the drone (GPS coordinates, battery percentage, ...)
# convert pdraw YUV flag to OpenCV YUV flag
cv2_cvt_color_flag = {
olympe.PDRAW_YUV_FORMAT_I420: cv2.COLOR_YUV2BGR_I420,
olympe.PDRAW_YUV_FORMAT_NV12: cv2.COLOR_YUV2BGR_NV12,
}[info["yuv"]["format"]]
# yuv_frame.as_ndarray() is a 2D numpy array with the proper "shape"
# i.e (3 * height / 2, width) because it's a YUV I420 or NV12 frame
# Use OpenCV to convert the yuv frame to RGB
cv2frame = cv2.cvtColor(yuv_frame.as_ndarray(), cv2_cvt_color_flag)
# Use OpenCV to show this frame
cv2.imshow(window_name, cv2frame)
cv2.waitKey(1) # please OpenCV for 1 ms...