當前位置: 首頁>>代碼示例>>Python>>正文


Python cv2.triangulatePoints方法代碼示例

本文整理匯總了Python中cv2.triangulatePoints方法的典型用法代碼示例。如果您正苦於以下問題:Python cv2.triangulatePoints方法的具體用法?Python cv2.triangulatePoints怎麽用?Python cv2.triangulatePoints使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在cv2的用法示例。


在下文中一共展示了cv2.triangulatePoints方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: triangulation

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import triangulatePoints [as 別名]
def triangulation(kp1, kp2, T_1w, T_2w):
    """Triangulation to get 3D points
    Args:
        kp1 (Nx2): keypoint in view 1 (normalized)
        kp2 (Nx2): keypoints in view 2 (normalized)
        T_1w (4x4): pose of view 1 w.r.t  i.e. T_1w (from w to 1)
        T_2w (4x4): pose of view 2 w.r.t world, i.e. T_2w (from w to 2)
    Returns:
        X (3xN): 3D coordinates of the keypoints w.r.t world coordinate
        X1 (3xN): 3D coordinates of the keypoints w.r.t view1 coordinate
        X2 (3xN): 3D coordinates of the keypoints w.r.t view2 coordinate
    """
    kp1_3D = np.ones((3, kp1.shape[0]))
    kp2_3D = np.ones((3, kp2.shape[0]))
    kp1_3D[0], kp1_3D[1] = kp1[:, 0].copy(), kp1[:, 1].copy()
    kp2_3D[0], kp2_3D[1] = kp2[:, 0].copy(), kp2[:, 1].copy()
    X = cv2.triangulatePoints(T_1w[:3], T_2w[:3], kp1_3D[:2], kp2_3D[:2])
    X /= X[3]
    X1 = T_1w[:3] @ X
    X2 = T_2w[:3] @ X
    return X[:3], X1, X2 
開發者ID:Huangying-Zhan,項目名稱:DF-VO,代碼行數:23,代碼來源:ops_3d.py

示例2: triangulate_points

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import triangulatePoints [as 別名]
def triangulate_points(self, kps_left, desps_left, kps_right, desps_right):
        matches = self.feature.row_match(
            kps_left, desps_left, kps_right, desps_right)
        assert len(matches) > 0

        px_left = np.array([kps_left[m.queryIdx].pt for m in matches])
        px_right = np.array([kps_right[m.trainIdx].pt for m in matches])

        points = cv2.triangulatePoints(
            self.left.projection_matrix, 
            self.right.projection_matrix, 
            px_left.transpose(), 
            px_right.transpose() 
            ).transpose()  # shape: (N, 4)

        points = points[:, :3] / points[:, 3:]

        can_view = np.logical_and(
            self.left.can_view(points), 
            self.right.can_view(points))

        mappoints = []
        matchs = []
        for i, point in enumerate(points):
            if not can_view[i]:
                continue
            normal = point - self.position
            normal = normal / np.linalg.norm(normal)

            color = self.left.get_color(px_left[i])

            mappoint = MapPoint(
                point, normal, desps_left[matches[i].queryIdx], color)
            mappoints.append(mappoint)
            matchs.append((matches[i].queryIdx, matches[i].trainIdx))

        return mappoints, matchs 
開發者ID:uoip,項目名稱:stereo_ptam,代碼行數:39,代碼來源:components.py

示例3: triangulatePoints

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import triangulatePoints [as 別名]
def triangulatePoints( P1, P2, x1, x2 ):
    X = cv2.triangulatePoints( P1[:3], P2[:3], x1[:2], x2[:2] )
    return X/X[3] # Remember to divide out the 4th row. Make it homogeneous 
開發者ID:luigifreda,項目名稱:pyslam,代碼行數:5,代碼來源:test_triangulatepoints.py

示例4: triangulate_normalized_points

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import triangulatePoints [as 別名]
def triangulate_normalized_points(pose_1w, pose_2w, kpn_1, kpn_2):
    # P1w = np.dot(K1,  M1w) # K1*[R1w, t1w]
    # P2w = np.dot(K2,  M2w) # K2*[R2w, t2w]
    # since we are working with normalized coordinates x_hat = Kinv*x, one has         
    P1w = pose_1w[:3,:] # [R1w, t1w]
    P2w = pose_2w[:3,:] # [R2w, t2w]

    point_4d_hom = cv2.triangulatePoints(P1w, P2w, kpn_1.T, kpn_2.T)
    good_pts_mask = np.where(point_4d_hom[3]!= 0)[0]
    point_4d = point_4d_hom / point_4d_hom[3] 
    
    if __debug__:
        if False: 
            point_reproj = P1w @ point_4d;
            point_reproj = point_reproj / point_reproj[2] - add_ones(kpn_1).T
            err = np.sum(point_reproj**2)
            print('reproj err: ', err)     

    #return point_4d.T
    points_3d = point_4d[:3, :].T
    return points_3d, good_pts_mask  


# compute the fundamental mat F12 and the infinite homography H21 [Hartley Zisserman pag 339] 
開發者ID:luigifreda,項目名稱:pyslam,代碼行數:26,代碼來源:utils_geom.py

示例5: triangulatePoints

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import triangulatePoints [as 別名]
def triangulatePoints(P1, P2, x1, x2):
    X = cv2.triangulatePoints(P1[:3], P2[:3], x1, x2)
    return X / X[3] 
開發者ID:DeepLabCut,項目名稱:DeepLabCut,代碼行數:5,代碼來源:auxiliaryfunctions_3d.py

示例6: get_body2ned

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import triangulatePoints [as 別名]
def get_body2ned(self, opt=False):
        ned, ypr, quat = self.get_camera_pose(opt)
        return transformations.quaternion_matrix(np.array(quat))[:3,:3]

    # compute rvec and tvec (used to build the camera projection
    # matrix for things like cv2.triangulatePoints) from camera pose 
開發者ID:UASLab,項目名稱:ImageAnalysis,代碼行數:8,代碼來源:image.py

示例7: compute_triangulation_calibration_images

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import triangulatePoints [as 別名]
def compute_triangulation_calibration_images(
    stereo_matrix, projectedPoints1, projectedPoints2, path_undistort, cfg_3d, plot=True
):
    """
    Performs triangulation of the calibration images.
    """
    from mpl_toolkits.mplot3d import Axes3D

    triangulate = []
    P1 = stereo_matrix["P1"]
    P2 = stereo_matrix["P2"]
    cmap = cfg_3d["colormap"]
    colormap = plt.get_cmap(cmap)
    markerSize = cfg_3d["dotsize"]
    markerType = cfg_3d["markerType"]

    for i in range(projectedPoints1.shape[0]):
        X_l = triangulatePoints(P1, P2, projectedPoints1[i], projectedPoints2[i])
        triangulate.append(X_l)
    triangulate = np.asanyarray(triangulate)

    # Plotting
    if plot == True:
        col = colormap(np.linspace(0, 1, triangulate.shape[0]))
        fig = plt.figure()
        ax = fig.add_subplot(111, projection="3d")

        for i in range(triangulate.shape[0]):
            xs = triangulate[i, 0, :]
            ys = triangulate[i, 1, :]
            zs = triangulate[i, 2, :]
            ax.scatter(xs, ys, zs, c=col[i], marker=markerType, s=markerSize)
            ax.set_xlabel("X")
            ax.set_ylabel("Y")
            ax.set_zlabel("Z")
        plt.savefig(os.path.join(str(path_undistort), "checkerboard_3d.png"))
    return triangulate 
開發者ID:DeepLabCut,項目名稱:DeepLabCut,代碼行數:39,代碼來源:auxiliaryfunctions_3d.py

示例8: triangulate_features

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import triangulatePoints [as 別名]
def triangulate_features(i1, i2):
    # quick sanity checks
    if i1 == i2:
        return None
    if not i2.name in i1.match_list:
        return None
    if len(i1.match_list[i2.name]) == 0:
        return None

    if not i1.kp_list or not len(i1.kp_list):
        i1.load_features()
    if not i2.kp_list or not len(i2.kp_list):
        i2.load_features()

    # camera calibration
    K = camera.get_K()
    IK = np.linalg.inv(K)

    # get poses
    rvec1, tvec1 = i1.get_proj()
    rvec2, tvec2 = i2.get_proj()
    R1, jac = cv2.Rodrigues(rvec1)
    PROJ1 = np.concatenate((R1, tvec1), axis=1)
    R2, jac = cv2.Rodrigues(rvec2)
    PROJ2 = np.concatenate((R2, tvec2), axis=1)

    # setup data structures for cv2 call
    uv1 = []; uv2 = []; indices = []
    for pair in i1.match_list[i2.name]:
        p1 = i1.kp_list[ pair[0] ].pt
        p2 = i2.kp_list[ pair[1] ].pt
        uv1.append( [p1[0], p1[1], 1.0] )
        uv2.append( [p2[0], p2[1], 1.0] )
    pts1 = IK.dot(np.array(uv1).T)
    pts2 = IK.dot(np.array(uv2).T)
    points = cv2.triangulatePoints(PROJ1, PROJ2, pts1[:2], pts2[:2])
    points /= points[3]
    return points

# find (forward) affine transformation between feature pairs 
開發者ID:UASLab,項目名稱:ImageAnalysis,代碼行數:42,代碼來源:smart.py


注:本文中的cv2.triangulatePoints方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。