當前位置: 首頁>>代碼示例>>Python>>正文


Python cv2.perspectiveTransform方法代碼示例

本文整理匯總了Python中cv2.perspectiveTransform方法的典型用法代碼示例。如果您正苦於以下問題:Python cv2.perspectiveTransform方法的具體用法?Python cv2.perspectiveTransform怎麽用?Python cv2.perspectiveTransform使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在cv2的用法示例。


在下文中一共展示了cv2.perspectiveTransform方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: render

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import perspectiveTransform [as 別名]
def render(img, obj, projection, model, color=False):
    """
    Render a loaded obj model into the current video frame
    """
    vertices = obj.vertices
    scale_matrix = np.eye(3) * 3
    h, w = model.shape

    for face in obj.faces:
        face_vertices = face[0]
        points = np.array([vertices[vertex - 1] for vertex in face_vertices])
        points = np.dot(points, scale_matrix)
        # render model in the middle of the reference surface. To do so,
        # model points must be displaced
        points = np.array([[p[0] + w / 2, p[1] + h / 2, p[2]] for p in points])
        dst = cv2.perspectiveTransform(points.reshape(-1, 1, 3), projection)
        imgpts = np.int32(dst)
        if color is False:
            cv2.fillConvexPoly(img, imgpts, (137, 27, 211))
        else:
            color = hex_to_rgb(face[-1])
            color = color[::-1]  # reverse
            cv2.fillConvexPoly(img, imgpts, color)

    return img 
開發者ID:juangallostra,項目名稱:augmented-reality,代碼行數:27,代碼來源:ar_main.py

示例2: filter_matrix_corners_homography

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import perspectiveTransform [as 別名]
def filter_matrix_corners_homography(pts, max, matrix) -> (float, List):
        '''
        Compute the images of the image corners and of its center (i.e. the points you get when you apply the homography to those corners and center),
        and verify that they make sense, i.e. are they inside the image canvas (if you expect them to be)? Are they well separated from each other?
        Return a distance and a list of the transformed points
        '''

        # Transform the 4 corners thanks to the transformation matrix calculated
        transformed_pts = cv2.perspectiveTransform(pts, matrix)

        # Compute the difference between original and modified position of points
        dist = round(cv2.norm(pts - transformed_pts, cv2.NORM_L2) / max, 10)  # sqrt((X1-X2)²+(Y1-Y2)²+...)

        # Totally an heuristic (geometry based):
        if dist < 0.20:
            return dist, transformed_pts
        else:
            return 1, transformed_pts 
開發者ID:CIRCL,項目名稱:douglas-quaid,代碼行數:20,代碼來源:distance_ransac_orb.py

示例3: filter_matrix_corners_affine

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import perspectiveTransform [as 別名]
def filter_matrix_corners_affine(pts, max, matrix) -> (float, List):
        '''
        Compute the images of the image corners and of its center (i.e. the points you get when you apply the homography to those corners and center),
        and verify that they make sense, i.e. are they inside the image canvas (if you expect them to be)? Are they well separated from each other?
        Return a distance and a list of the transformed points
        '''

        # Make affine transformation
        add_row = np.array([[0, 0, 1]])
        affine_matrix = np.concatenate((matrix, add_row), axis=0)
        transformed_pts_affine = cv2.perspectiveTransform(pts, affine_matrix)

        # Affine distance
        tmp_dist_affine = round(cv2.norm(pts - transformed_pts_affine, cv2.NORM_L2) / max, 10)  # sqrt((X1-X2)²+(Y1-Y2)²+...)

        # Totally an heuristic (geometry based):
        if tmp_dist_affine < 0.20:
            return tmp_dist_affine, transformed_pts_affine
        else:
            return 1, transformed_pts_affine 
開發者ID:CIRCL,項目名稱:douglas-quaid,代碼行數:22,代碼來源:distance_ransac_orb.py

示例4: _augment_keypoints

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import perspectiveTransform [as 別名]
def _augment_keypoints(self, keypoints_on_images, random_state, parents, hooks):
        result = keypoints_on_images
        matrices, max_heights, max_widths = self._create_matrices(
            [kps.shape for kps in keypoints_on_images],
            random_state
        )

        for i, (M, max_height, max_width) in enumerate(zip(matrices, max_heights, max_widths)):
            keypoints_on_image = keypoints_on_images[i]
            kps_arr = keypoints_on_image.get_coords_array()
            #nb_channels = keypoints_on_image.shape[2] if len(keypoints_on_image.shape) >= 3 else None

            warped = cv2.perspectiveTransform(np.array([kps_arr], dtype=np.float32), M)
            warped = warped[0]
            warped_kps = ia.KeypointsOnImage.from_coords_array(
                warped,
                shape=(max_height, max_width) + keypoints_on_image.shape[2:]
            )
            if self.keep_size:
                warped_kps = warped_kps.on(keypoints_on_image.shape)
            result[i] = warped_kps

        return result 
開發者ID:JoshuaPiinRueyPan,項目名稱:ViolenceDetection,代碼行數:25,代碼來源:geometric.py

示例5: getTransformedLocation

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import perspectiveTransform [as 別名]
def getTransformedLocation(x_coord,y_coord, calData):
    try:
            # transform only the hit point with the saved transformation matrix
            # ToDo: idea for second camera -> transform complete image and overlap both images to find dart location?
            dart_loc_temp = np.array([[x_coord, y_coord]], dtype="float32")
            dart_loc_temp = np.array([dart_loc_temp])
            dart_loc = cv2.perspectiveTransform(dart_loc_temp, calData.transformation_matrix)
            new_dart_loc = tuple(dart_loc.reshape(1, -1)[0])

            return new_dart_loc

    #system not calibrated
    except AttributeError as err1:
        print err1
        return (-1, -1)

    except NameError as err2:
        #not calibrated error
        print err2
        return (-2, -2)


#Returns dartThrow (score, multiplier, angle, magnitude) based on x,y location 
開發者ID:hanneshoettinger,項目名稱:opencv-steel-darts,代碼行數:25,代碼來源:DartsMapping.py

示例6: persTransform

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import perspectiveTransform [as 別名]
def persTransform(pts, H):
    """Transforms a list of points, `pts`,
    using the perspective transform `H`."""
    src = np.zeros((len(pts), 1, 2))
    src[:, 0] = pts
    dst = cv2.perspectiveTransform(src, H)
    return np.array(dst[:, 0, :], dtype='float32') 
開發者ID:mathandy,項目名稱:python-opencv-rectangle-tracker,代碼行數:9,代碼來源:rectangle_tracker.py

示例7: track

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import perspectiveTransform [as 別名]
def track(self, frame):
        '''Returns a list of detected TrackedTarget objects'''
        self.frame_points, frame_descrs = self.detect_features(frame)
        if len(self.frame_points) < MIN_MATCH_COUNT:
            return []
        matches = self.matcher.knnMatch(frame_descrs, k = 2)
        matches = [m[0] for m in matches if len(m) == 2 and m[0].distance < m[1].distance * 0.75]
        if len(matches) < MIN_MATCH_COUNT:
            return []
        matches_by_id = [[] for _ in xrange(len(self.targets))]
        for m in matches:
            matches_by_id[m.imgIdx].append(m)
        tracked = []
        for imgIdx, matches in enumerate(matches_by_id):
            if len(matches) < MIN_MATCH_COUNT:
                continue
            target = self.targets[imgIdx]
            p0 = [target.keypoints[m.trainIdx].pt for m in matches]
            p1 = [self.frame_points[m.queryIdx].pt for m in matches]
            p0, p1 = np.float32((p0, p1))
            H, status = cv2.findHomography(p0, p1, cv2.RANSAC, 3.0)
            status = status.ravel() != 0
            if status.sum() < MIN_MATCH_COUNT:
                continue
            p0, p1 = p0[status], p1[status]

            x0, y0, x1, y1 = target.rect
            quad = np.float32([[x0, y0], [x1, y0], [x1, y1], [x0, y1]])
            quad = cv2.perspectiveTransform(quad.reshape(1, -1, 2), H).reshape(-1, 2)

            track = TrackedTarget(target=target, p0=p0, p1=p1, H=H, quad=quad)
            tracked.append(track)
        tracked.sort(key = lambda t: len(t.p0), reverse=True)
        return tracked 
開發者ID:makelove,項目名稱:OpenCV-Python-Tutorial,代碼行數:36,代碼來源:plane_tracker.py

示例8: visualize_homo

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import perspectiveTransform [as 別名]
def visualize_homo(img1, img2, kp1, kp2, matches, homo, mask):
    h, w, d = img1.shape
    pts = [[0, 0], [0, h - 1], [w - 1, h - 1], [w - 1, 0]]
    pts = np.array(pts, dtype=np.float32).reshape((-1, 1, 2))
    dst = cv.perspectiveTransform(pts, homo)

    img2 = cv.polylines(img2, [np.int32(dst)], True, [255, 0, 0], 3, 8)

    matches_mask = mask.ravel().tolist()
    draw_params = dict(matchesMask=matches_mask,
                       singlePointColor=None,
                       matchColor=(0, 255, 0),
                       flags=2)
    res = cv.drawMatches(img1, kp1, img2, kp2, matches, None, **draw_params)
    return res 
開發者ID:gmichaeljaison,項目名稱:specularity-removal,代碼行數:17,代碼來源:homography.py

示例9: track_target

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import perspectiveTransform [as 別名]
def track_target(self, frame): 
        self.cur_keypoints, self.cur_descriptors = self.detect_features(frame) 

        if len(self.cur_keypoints) < self.min_matches: return []
        try: matches = self.feature_matcher.knnMatch(self.cur_descriptors, k=2)
        except Exception as e:
            print('Invalid target, please select another with features to extract')
            return []
        matches = [match[0] for match in matches if len(match) == 2 and match[0].distance < match[1].distance * 0.75] 
        if len(matches) < self.min_matches: return [] 
 
        matches_using_index = [[] for _ in range(len(self.tracking_targets))] 
        for match in matches: 
            matches_using_index[match.imgIdx].append(match) 
 
        tracked = [] 
        for image_index, matches in enumerate(matches_using_index): 
            if len(matches) < self.min_matches: continue 
 
            target = self.tracking_targets[image_index] 
            points_prev = [target.keypoints[m.trainIdx].pt for m in matches]
            points_cur = [self.cur_keypoints[m.queryIdx].pt for m in matches]
            points_prev, points_cur = np.float32((points_prev, points_cur))
            H, status = cv2.findHomography(points_prev, points_cur, cv2.RANSAC, 3.0) 
            status = status.ravel() != 0

            if status.sum() < self.min_matches: continue 
 
            points_prev, points_cur = points_prev[status], points_cur[status] 
 
            x_start, y_start, x_end, y_end = target.rect 
            quad = np.float32([[x_start, y_start], [x_end, y_start], [x_end, y_end], [x_start, y_end]])
            quad = cv2.perspectiveTransform(quad.reshape(1, -1, 2), H).reshape(-1, 2)
            track = self.tracked_target(target=target, points_prev=points_prev, points_cur=points_cur, H=H, quad=quad) 
            tracked.append(track) 
 
        tracked.sort(key = lambda x: len(x.points_prev), reverse=True) 
        return tracked 
 
    # Detect features in the selected ROIs and return the keypoints and descriptors 
開發者ID:PacktPublishing,項目名稱:OpenCV-3-x-with-Python-By-Example,代碼行數:42,代碼來源:pose_estimation.py

示例10: dealcurve

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import perspectiveTransform [as 別名]
def dealcurve(curve):
	cmean = curve.mean(0)
	angle = (random.random()*10)-5
	scale = ((random.random()-0.5)*0.1)+1.0
	m = cv2.getRotationMatrix2D((0,0),angle,scale)
	m = np.vstack([m,[0,0,1]])
	dmean = (np.random.rand(1,2)-0.5)*10
	curve = curve - cmean
	curve = cv2.perspectiveTransform(np.array([curve]),m)
	curve += cmean
	curve += dmean
	return curve[0] 
開發者ID:bj80heyue,項目名稱:One_Shot_Face_Reenactment,代碼行數:14,代碼來源:transforms.py

示例11: _homography

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import perspectiveTransform [as 別名]
def _homography(src_pts,dst_pts,template_width,template_height,match_point=None):
    row,col,dim = dst_pts.shape
    if match_point:
        for i in range(row):
            match_point.append([int(dst_pts[i][0][0]),int(dst_pts[i][0][1])])
    M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
    pts = np.float32([[0, 0], [0, template_height - 1], 
                    [template_width - 1, template_height - 1], 
                    [template_width - 1, 0]]).reshape(-1, 1, 2)
    #找到一個變換矩陣,從查詢圖映射到檢測圖片
    dst = cv2.perspectiveTransform(pts, M) 
    return dst 
開發者ID:NetEase,項目名稱:airtest,代碼行數:14,代碼來源:image_SIFT.py

示例12: find

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import perspectiveTransform [as 別名]
def find(search_file, image_file, threshold=None):
    '''
    param threshold are disabled in sift match.
    '''
    sch = _cv2open(search_file, 0)
    img = _cv2open(image_file, 0)

    kp_sch, des_sch = sift.detectAndCompute(sch, None)
    kp_img, des_img = sift.detectAndCompute(img, None)

    if len(kp_sch) < MIN_MATCH_COUNT or len(kp_img) < MIN_MATCH_COUNT:
        return None

    FLANN_INDEX_KDTREE = 0
    index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
    search_params = dict(checks = 50)

    flann = cv2.FlannBasedMatcher(index_params, search_params)

    matches = flann.knnMatch(des_sch, des_img, k=2)

    good = []
    for m,n in matches:
        if m.distance < 0.7*n.distance:
            good.append(m)

    if len(good) > MIN_MATCH_COUNT:
        sch_pts = np.float32([kp_sch[m.queryIdx].pt for m in good]).reshape(-1, 1, 2)
        img_pts = np.float32([kp_img[m.trainIdx].pt for m in good]).reshape(-1, 1, 2) 

        M, mask = cv2.findHomography(sch_pts, img_pts, cv2.RANSAC, 5.0)
        # matchesMask = mask.ravel().tolist()

        h, w = sch.shape
        pts = np.float32([ [0, 0], [0, h-1], [w-1, h-1], [w-1, 0] ]).reshape(-1, 1, 2)
        dst = cv2.perspectiveTransform(pts, M)
        lt, br = dst[0][0], dst[2][0]
        return map(int, (lt[0]+w/2, lt[1]+h/2))
    else:
        return None 
開發者ID:NetEase,項目名稱:airtest,代碼行數:42,代碼來源:sift.py

示例13: _homography

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import perspectiveTransform [as 別名]
def _homography(src_pts,dst_pts,template_width,template_height,match_point=None):
    row,col,dim = dst_pts.shape
    if match_point:
        for i in range(row):
            match_point.append([int(dst_pts[i][0][0]),int(dst_pts[i][0][1])])
    M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
    pts = np.float32([[0, 0], [0, template_height - 1], 
                    [template_width - 1, template_height - 1], 
                    [template_width - 1, 0]]).reshape(-1, 1, 2)
    #找到一個變換矩陣,從查詢圖映射到檢測圖片
    dst = cv2.perspectiveTransform(pts, M) 
    return dst

#SIFT + Homography 
開發者ID:NetEase,項目名稱:airtest,代碼行數:16,代碼來源:auto.py

示例14: ld2bbSample

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import perspectiveTransform [as 別名]
def ld2bbSample(sample, h):
    sample = np.float32([sample]).reshape(-1, 1, 2)
    con = cv2.perspectiveTransform(sample, h)
    return np.array(list(con[0][0])) 
開發者ID:BerkeleyLearnVerify,項目名稱:VerifAI,代碼行數:6,代碼來源:utils.py

示例15: transform_pnts

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import perspectiveTransform [as 別名]
def transform_pnts(self, pnts, M33):
        """
        :param pnts: 2D pnts, left-top, right-top, right-bottom, left-bottom
        :param M33: output from transform_image()
        :return: 2D pnts apply perspective transform
        """
        pnts = np.asarray(pnts, dtype=np.float32)
        pnts = np.array([pnts])
        dst_pnts = cv2.perspectiveTransform(pnts, M33)[0]

        return dst_pnts 
開發者ID:Sanster,項目名稱:text_renderer,代碼行數:13,代碼來源:math_utils.py


注:本文中的cv2.perspectiveTransform方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。