本文整理匯總了Python中cv2.magnitude方法的典型用法代碼示例。如果您正苦於以下問題:Python cv2.magnitude方法的具體用法?Python cv2.magnitude怎麽用?Python cv2.magnitude使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類cv2
的用法示例。
在下文中一共展示了cv2.magnitude方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_mag_avg
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import magnitude [as 別名]
def get_mag_avg(img):
img = np.sqrt(img)
kernels = get_kernels()
mag = np.zeros(img.shape, dtype='float32')
for kernel_filter in kernels:
gx = cv2.filter2D(np.float32(img), cv2.CV_32F, kernel_filter[1], borderType=cv2.BORDER_REFLECT)
gy = cv2.filter2D(np.float32(img), cv2.CV_32F, kernel_filter[0], borderType=cv2.BORDER_REFLECT)
mag += cv2.magnitude(gx, gy)
mag /= len(kernels)
return np.uint8(mag)
示例2: get_mag_ang
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import magnitude [as 別名]
def get_mag_ang(img):
"""
Gets image gradient (magnitude) and orientation (angle)
Args:
img
Returns:
Gradient, orientation
"""
img = np.sqrt(img)
gx = cv2.Sobel(np.float32(img), cv2.CV_32F, 1, 0)
gy = cv2.Sobel(np.float32(img), cv2.CV_32F, 0, 1)
mag, ang = cv2.cartToPolar(gx, gy)
return mag, ang, gx, gy
示例3: grad_mag
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import magnitude [as 別名]
def grad_mag(ch_bd):
# normalize
mu_ = ch_bd.mean()
std_ = ch_bd.std()
ch_bd = np.divide(np.subtract(ch_bd, mu_), std_)
ch_bd[np.isnan(ch_bd)] = 0
ch_bd += abs(ch_bd.min())
# compute gradient orientation and magnitude
return get_mag_ang(ch_bd)
示例4: fourier_transform
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import magnitude [as 別名]
def fourier_transform(ch_bd):
dft = cv2.dft(np.float32(ch_bd), flags=cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)
# get the Power Spectrum
magnitude_spectrum = 20. * np.log(cv2.magnitude(dft_shift[:, :, 0], dft_shift[:, :, 1]))
psd1D = azimuthal_avg(magnitude_spectrum)
return list(cv2.meanStdDev(psd1D))
示例5: main
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import magnitude [as 別名]
def main():
# read an image
img = cv2.imread('../figures/flower.png')
# create cropped grayscale image from the original image
crop_gray = cv2.cvtColor(img[100:400, 100:400], cv2.COLOR_BGR2GRAY)
# take discrete fourier transform
dft = cv2.dft(np.float32(crop_gray),flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)
magnitude_spectrum = 20*np.log(cv2.magnitude(dft_shift[:,:,0],dft_shift[:,:,1]))
# plot results
plot_dft(crop_gray, magnitude_spectrum)
示例6: filter
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import magnitude [as 別名]
def filter(self, image):
"""
Filter the given image with the Gabor kernels in this bank.
Parameters
----------
image: numpy.array
Image to be filtered.
Returns
-------
responses: numpy.array
List of the responses of the filtering with the Gabor kernels. The
responses are the magnitude of both the real and imaginary parts of
the convolution with each kernel, hence this list dimensions are the
same of the image, plus another dimension for the 32 responses (one
for each kernel in the bank, since there are 4 wavelengths and 8
orientations).
"""
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
responses = []
for wavelength in self._wavelengths:
for orientation in self._orientations:
# Get the kernel
frequency = 1 / wavelength
par = KernelParams(wavelength, orientation)
kernel = self._kernels[par]
# Filter with both real and imaginary parts
real = cv2.filter2D(image, cv2.CV_32F, kernel.real)
imag = cv2.filter2D(image, cv2.CV_32F, kernel.imag)
# The response is the magnitude of the real and imaginary
# responses to the filters, normalized to [-1, 1]
mag = cv2.magnitude(real, imag)
cv2.normalize(mag, mag, -1, 1, cv2.NORM_MINMAX)
responses.append(mag)
return np.array(responses)
示例7: feature_fourier
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import magnitude [as 別名]
def feature_fourier(chBd, blk, scs, end_scale):
rows, cols = chBd.shape
scales_half = int(end_scale / 2.0)
scales_blk = end_scale - blk
out_len = 0
pix_ctr = 0
for i in range(0, rows-scales_blk, blk):
for j in range(0, cols-scales_blk, blk):
for k in scs:
out_len += 2
# set the output list
out_list = np.zeros(out_len, dtype='float32')
for i in range(0, rows-scales_blk, blk):
for j in range(0, cols-scales_blk, blk):
for k in scs:
k_half = int(k / 2.0)
ch_bd = chBd[i+scales_half-k_half:i+scales_half-k_half+k,
j+scales_half-k_half:j+scales_half-k_half+k]
# get the Fourier Transform
dft = cv2.dft(np.float32(ch_bd), flags=cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)
# get the Power Spectrum
magnitude_spectrum = 20.0 * np.log(cv2.magnitude(dft_shift[:, :, 0], dft_shift[:, :, 1]))
psd1D = azimuthal_avg(magnitude_spectrum)
sts = list(cv2.meanStdDev(psd1D))
# plt.subplot(121)
# plt.imshow(ch_bd, cmap='gray')
# plt.subplot(122)
# plt.imshow(magnitude_spectrum, interpolation='nearest')
# plt.show()
# print psd1D
# sys.exit()
for st in sts:
if np.isnan(st[0][0]):
out_list[pix_ctr] = 0.0
else:
out_list[pix_ctr] = st[0][0]
pix_ctr += 1
out_list[np.isnan(out_list) | np.isinf(out_list)] = 0.0
return out_list