本文整理匯總了Python中cv2.error方法的典型用法代碼示例。如果您正苦於以下問題:Python cv2.error方法的具體用法?Python cv2.error怎麽用?Python cv2.error使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類cv2
的用法示例。
在下文中一共展示了cv2.error方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: JpegString
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import error [as 別名]
def JpegString(image, jpeg_quality=90):
"""Returns given PIL.Image instance as jpeg string.
Args:
image: A PIL image.
jpeg_quality: The image quality, on a scale from 1 (worst) to 95 (best).
Returns:
a jpeg_string.
"""
# This fix to PIL makes sure that we don't get an error when saving large
# jpeg files. This is a workaround for a bug in PIL. The value should be
# substantially larger than the size of the image being saved.
ImageFile.MAXBLOCK = 640 * 512 * 64
output_jpeg = StringIO()
image.save(output_jpeg, 'jpeg', quality=jpeg_quality, optimize=True)
return output_jpeg.getvalue()
示例2: create
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import error [as 別名]
def create(self, res_file, show=True):
img = cv2.imread(self._img_path)
for thug in self._thugs:
if thug.eyes_available:
try:
self._draw_glasses(img, thug)
except ThugError as e:
logger.error(e)
if thug.mouth_available:
try:
self._draw_cigar(img, thug) # depends also on eyes
except ThugError as e:
logger.error(e)
cv2.imwrite(res_file, img)
self._img_path = res_file
return super().create(res_file, show)
示例3: _draw_on_top
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import error [as 別名]
def _draw_on_top(self, img, x, y, sub_img, sub_name=''):
h, w, _ = sub_img.shape
mask = sub_img[:, :, 3]
mask_inv = cv2.bitwise_not(mask)
sub_img_ = sub_img[:, :, :3]
background = img[y:y + h, x:x + w]
try:
background = cv2.bitwise_and(background, background, mask=mask_inv)
except cv2.error as e:
raise ThugError(
'Can not draw {}, please try with smaller {}.'.format(
sub_name, sub_name))
foreground = cv2.bitwise_and(sub_img_, sub_img_, mask=mask)
sum_ = cv2.add(background, foreground)
img[y:y + h, x:x + w] = sum_
示例4: __data_generation
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import error [as 別名]
def __data_generation(self, item_ids_temp):
'Generates data containing batch_size samples'
# Initialization
X = np.empty((len(item_ids_temp), *self.dim, self.n_channels))
# Generate data
for i, item_id in enumerate(item_ids_temp):
image_id = self.image_ids[item_id]
fname = f'{self.dir}/{image_id}.jpg'
if os.path.isfile(fname):
img = cv2.imread(fname)
try:
img = cv2.resize(img, self.dim, interpolation = cv2.INTER_LINEAR)
except cv2.error as e:
img = np.zeros([*self.dim, self.n_channels])
else:
img = np.zeros([*self.dim, self.n_channels])
X[i,] = img
return X
示例5: does_page_have_valid_table
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import error [as 別名]
def does_page_have_valid_table(self, min_fract_area=.2, min_cells=50):
"""
Analyzes whether the image contains a table by evaluating the
coarse table outline and its children
"""
try: # Some CV2 operations may fail e.g. if no correct supernode has been recognized
# Check fractional area of table compared to image
img_area = self.imgshape[0] * self.imgshape[1]
supernode_area = cv2.contourArea(self.supernode_bbox)
if supernode_area < img_area * min_fract_area:
return False
# Check minimum number of cells (ncells = degree of coarse outline node)
ncells = self.g.degree(self.supernode_idx)
return ncells >= min_cells
except cv2.error:
return False
示例6: run_farneback
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import error [as 別名]
def run_farneback(frames):
try:
return cv2.calcOpticalFlowFarneback(
frames[0], frames[1],
# options, defaults
None, # output
0.5, # pyr_scale, 0.5
10, # levels, 3
min(frames[0].shape[:2]) // 5, # winsize, 15
10, # iterations, 3
7, # poly_n, 5
1.5, # poly_sigma, 1.2
cv2.OPTFLOW_FARNEBACK_GAUSSIAN, # flags, 0
)
except cv2.error:
return None
示例7: load_grey_from_cv2_object
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import error [as 別名]
def load_grey_from_cv2_object(pic_object: np.ndarray) -> np.ndarray:
""" preparation for cv2 object (force turn it into gray) """
pic_object = pic_object.astype(np.uint8)
try:
# try to turn it into grey
grey_pic = cv2.cvtColor(pic_object, cv2.COLOR_BGR2GRAY)
except cv2.error:
# already grey
return pic_object
return grey_pic
示例8: turn_grey
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import error [as 別名]
def turn_grey(old: np.ndarray) -> np.ndarray:
try:
return cv2.cvtColor(old, cv2.COLOR_RGB2GRAY)
except cv2.error:
return old
示例9: detect_face
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import error [as 別名]
def detect_face(data):
from retinaface.detector import detector
from utils import align_face
src_path = data['src_path']
dst_path = data['dst_path']
boxB = np.array(data['boxB'])
img = cv.imread(src_path)
if img is not None:
img, ratio = resize(img)
boxB = boxB * ratio
try:
bboxes, landmarks = detector.detect_faces(img)
if len(bboxes) > 0:
i = select_face(bboxes, boxB)
bbox, landms = bboxes[i], landmarks[i]
img = align_face(img, [landms])
dirname = os.path.dirname(dst_path)
os.makedirs(dirname, exist_ok=True)
cv.imwrite(dst_path, img)
except ValueError as err:
print(err)
except cv.error as err:
print(err)
return True
示例10: ParallelPreprocessing
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import error [as 別名]
def ParallelPreprocessing(args):
"""Parallel preprocessing: rotation, resize and jpeg encoding to string."""
(vid_path, timestep, num_timesteps, view) = args
try:
image = GetSpecificFrame(vid_path, timestep)
# Resizing.
resize_str = ''
if FLAGS.resize_min_edge > 0:
resize_str += ', resize ' + shapestring(image)
image = cv2resizeminedge(image, FLAGS.resize_min_edge)
resize_str += ' => ' + shapestring(image)
# Rotating.
rotate = None
if FLAGS.rotate:
rotate = FLAGS.rotate
if FLAGS.rotate_if_matching is not None:
rotate = None
patt = re.compile(FLAGS.rotate_if_matching)
if patt.match(vid_path) is not None:
rotate = FLAGS.rotate
if rotate is not None:
image = cv2rotateimage(image, FLAGS.rotate)
# Jpeg encoding.
image = Image.fromarray(image)
im_string = bytes_feature([JpegString(image)])
if timestep % FLAGS.log_frequency == 0:
tf.logging.info('Loaded frame %d / %d for %s (rotation %s%s) from %s' %
(timestep, num_timesteps, view, str(rotate), resize_str,
vid_path))
return im_string
except cv2.error as e:
tf.logging.error('Error while loading frame %d of %s: %s' %
(timestep, vid_path, str(e)))
return None
示例11: test_other_dtypes
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import error [as 別名]
def test_other_dtypes(self):
aug = iaa.AllChannelsHistogramEqualization()
# np.uint16: cv2.error: OpenCV(3.4.5) (...)/histogram.cpp:3345:
# error: (-215:Assertion failed)
# src.type() == CV_8UC1 in function 'equalizeHist'
# np.uint32: TypeError: src data type = 6 is not supported
# np.uint64: see np.uint16
# np.int8: see np.uint16
# np.int16: see np.uint16
# np.int32: see np.uint16
# np.int64: see np.uint16
# np.float16: TypeError: src data type = 23 is not supported
# np.float32: see np.uint16
# np.float64: see np.uint16
# np.float128: TypeError: src data type = 13 is not supported
for dtype in [np.uint8]:
with self.subTest(dtype=np.dtype(dtype).name):
min_value, _center_value, max_value = \
iadt.get_value_range_of_dtype(dtype)
dynamic_range = max_value + abs(min_value)
if np.dtype(dtype).kind == "f":
img = np.zeros((16,), dtype=dtype)
for i in sm.xrange(16):
img[i] = min_value + i * (0.01 * dynamic_range)
img = img.reshape((4, 4))
else:
img = np.arange(
min_value, min_value + 16, dtype=dtype).reshape((4, 4))
img_aug = aug.augment_image(img)
assert img_aug.dtype.name == np.dtype(dtype).name
assert img_aug.shape == img.shape
assert np.min(img_aug) < min_value + 0.1 * dynamic_range
assert np.max(img_aug) > max_value - 0.1 * dynamic_range
示例12: read
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import error [as 別名]
def read(self):
""" """
try:
ret, frame = self.cam.read()
rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
except cv2.error:
raise cv2.error("OpenCV can't find a camera!")
if self.bw:
return np.mean(rgb, 2).astype(rgb.dtype)
else:
return rgb
示例13: show_detection_result
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import error [as 別名]
def show_detection_result(data, label, bboxes, cls_scores, class_name_list):
data = data[0].as_in_context(mx.cpu(0))
data[0] = data[0] * 0.229 + 0.485
data[1] = data[1] * 0.224 + 0.456
data[2] = data[2] * 0.225 + 0.406
label = label[0].asnumpy()
img = data.asnumpy()
img = np.array(np.round(img * 255), dtype=np.uint8)
img = np.transpose(img, (1, 2, 0))
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
bboxes = bboxes.asnumpy()
cls_scores = cls_scores.asnumpy()
# Show ground truth
for item in label:
cv2.rectangle(img, (int(item[0]), int(item[1])), (int(item[2]), int(item[3])), color=(255, 0, 0), thickness=2)
cv2.putText(img, class_name_list[int(item[4])], (int(item[0]), int(item[3])),0, 0.5,(0, 255, 0))
# NMS by class
for cls_id in range(1, len(class_name_list)):
cur_scores = cls_scores[:, cls_id]
bboxes_pick = bboxes[:, cls_id * 4: (cls_id+1)*4]
cur_scores, bboxes_pick = nms(cur_scores, bboxes_pick, cfg.rcnn_nms_thresh)
for i in range(len(cur_scores)):
if cur_scores[i] >= cfg.rcnn_score_thresh:
bbox = bboxes_pick[i]
cv2.rectangle(img, (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])), color=(0, 0, 255), thickness=1)
cv2.putText(img, "{}: {:.4}".format(class_name_list[cls_id], cur_scores[i]), (int(bbox[0]), int(bbox[3])),0, 0.5,(255, 255, 0))
try:
cv2.imshow("Img", img)
cv2.waitKey(0)
except cv2.error:
cv2.imwrite("det_result.jpg", img)
print("imshow() is not supported! Saved result to det_result.jpg.")
input()
示例14: call_tracker_constructor
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import error [as 別名]
def call_tracker_constructor(self, tracker_type):
if tracker_type == 'DASIAMRPN':
tracker = dasiamrpn()
else:
# -- TODO: remove this if I assume OpenCV version > 3.4.0
if int(self.major_ver == 3) and int(self.minor_ver) < 3:
#tracker = cv2.Tracker_create(tracker_type)
pass
# --
else:
try:
tracker = cv2.TrackerKCF_create()
except AttributeError as error:
print(error)
print('\nMake sure that OpenCV contribute is installed: opencv-contrib-python\n')
if tracker_type == 'CSRT':
tracker = cv2.TrackerCSRT_create()
elif tracker_type == 'KCF':
tracker = cv2.TrackerKCF_create()
elif tracker_type == 'MOSSE':
tracker = cv2.TrackerMOSSE_create()
elif tracker_type == 'MIL':
tracker = cv2.TrackerMIL_create()
elif tracker_type == 'BOOSTING':
tracker = cv2.TrackerBoosting_create()
elif tracker_type == 'MEDIANFLOW':
tracker = cv2.TrackerMedianFlow_create()
elif tracker_type == 'TLD':
tracker = cv2.TrackerTLD_create()
elif tracker_type == 'GOTURN':
tracker = cv2.TrackerGOTURN_create()
return tracker
示例15: __region_mask__
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import error [as 別名]
def __region_mask__(self,reference_image,horizontal_grid,vertical_grid):
"""
use the first and last horizontal/vertical grid lines to make a mask around the desired region/table
:return:
"""
reference_shape = reference_image.shape
# [:2] in case we read in the image in colour format - doesn't seem necessary to throw an error
# the first mask will be an outline of the region, sort of like #. The second mask will fill in the
# central interior box
mask = np.zeros(reference_shape[:2],np.uint8)
mask2 = np.zeros(mask.shape,np.uint8)
# draw the first and last horizontal/vertical grid lines to create a box
cv2.drawContours(mask,horizontal_grid,0,255,-1)
cv2.drawContours(mask,horizontal_grid,len(horizontal_grid)-2,255,-1)
cv2.drawContours(mask,vertical_grid,0,255,-1)
cv2.drawContours(mask,vertical_grid,len(vertical_grid)-1,255,-1)
# find the (hopefully) one interior contour - should be our mask
_,contours, hier = cv2.findContours(mask.copy(),cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
assert len(contours) == 1
for c,h in zip(contours,hier[0]):
if h[-1] == -1:
continue
cv2.drawContours(mask2,[c],0,255,-1)
return mask2