本文整理匯總了Python中cv2.equalizeHist方法的典型用法代碼示例。如果您正苦於以下問題:Python cv2.equalizeHist方法的具體用法?Python cv2.equalizeHist怎麽用?Python cv2.equalizeHist使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類cv2
的用法示例。
在下文中一共展示了cv2.equalizeHist方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: main
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import equalizeHist [as 別名]
def main():
imagePath = "img.jpg"
img = cv2.imread(imagePath)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
generate_histogram(gray)
cv2.imwrite("before.jpg", gray)
gray = cv2.equalizeHist(gray)
generate_histogram(gray)
cv2.imwrite("after.jpg",gray)
return 0
示例2: _normalize_image
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import equalizeHist [as 別名]
def _normalize_image(self, image: np.ndarray,
eye_or_face: FaceParts) -> None:
camera_matrix_inv = np.linalg.inv(self.camera.camera_matrix)
normalized_camera_matrix = self.normalized_camera.camera_matrix
scale = self._get_scale_matrix(eye_or_face.distance)
conversion_matrix = scale @ eye_or_face.normalizing_rot.as_matrix()
projection_matrix = normalized_camera_matrix @ conversion_matrix @ camera_matrix_inv
normalized_image = cv2.warpPerspective(
image, projection_matrix,
(self.normalized_camera.width, self.normalized_camera.height))
if eye_or_face.name in {FacePartsName.REYE, FacePartsName.LEYE}:
normalized_image = cv2.cvtColor(normalized_image,
cv2.COLOR_BGR2GRAY)
normalized_image = cv2.equalizeHist(normalized_image)
eye_or_face.normalized_image = normalized_image
示例3: _augment_batch_
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import equalizeHist [as 別名]
def _augment_batch_(self, batch, random_state, parents, hooks):
if batch.images is None:
return batch
images = batch.images
iadt.allow_only_uint8(images, augmenter=self)
for i, image in enumerate(images):
if image.size == 0:
continue
image_warped = [
cv2.equalizeHist(_normalize_cv2_input_arr_(image[..., c]))
for c in sm.xrange(image.shape[2])]
image_warped = np.array(image_warped, dtype=image_warped[0].dtype)
image_warped = image_warped.transpose((1, 2, 0))
batch.images[i] = image_warped
return batch
示例4: manipulate_images
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import equalizeHist [as 別名]
def manipulate_images(sample_image):
batch = []
cnt = 0
dx = 40
ds = 512
for i in range(0, sample_image.shape[0] - 3, 3):
tmp = []
for j in range(3):
img = sample_image[i + j]
img = 255.0 / np.amax(img) * img
img = cv2.equalizeHist(img.astype(np.uint8))
img = img[dx: ds - dx, dx: ds - dx]
img = cv2.resize(img, (224, 224))
tmp.append(img)
batch.append(tmp)
batch = np.array(batch, dtype=np.float32)
return batch
示例5: getRegions
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import equalizeHist [as 別名]
def getRegions(img):
grayImg = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
# grayImg = cv2.equalizeHist(np.copy(grayImg))
edges = cv2.Canny(grayImg,100,200,apertureSize = 3)
if DEBUG:
utils.display([('Canny Edge Detection', edges)])
kernel = np.ones((3,3),np.uint8)
edges = cv2.dilate(edges,kernel,iterations = 14)
# edges = 255-edges
# utils.display([('', edges)])
contours, hierarchy = cv2.findContours(edges,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
if DEBUG:
utils.display([('Contours', edges)])
# Only take contours of a certain size
regions = []
for contour in contours:
imgH, imgW, _ = img.shape
[x, y, w, h] = cv2.boundingRect(contour)
if w < 50 or h < 50:
pass
elif w > .95*imgW or h > .95*imgH:
pass
else:
regions.append((x, y, x+w, y+h))
return regions
示例6: getFaceCoordinates
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import equalizeHist [as 別名]
def getFaceCoordinates(image):
cascade = cv2.CascadeClassifier(CASCADE_PATH)
img_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
img_gray = cv2.equalizeHist(img_gray)
rects = cascade.detectMultiScale(
img_gray,
scaleFactor=1.1,
minNeighbors=3,
minSize=(48, 48)
)
# For now, we only deal with the case that we detect one face.
if(len(rects) != 1) :
return None
face = rects[0]
bounding_box = [face[0], face[1], face[0] + face[2], face[1] + face[3]]
# return map((lambda x: x), bounding_box)
return bounding_box
開發者ID:a514514772,項目名稱:Real-Time-Facial-Expression-Recognition-with-DeepLearning,代碼行數:23,代碼來源:face_detection_utilities.py
示例7: hist_equalization
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import equalizeHist [as 別名]
def hist_equalization(gray_img):
"""Histogram equalization is a method to normalize the distribution of intensity values. If the image has low
contrast it will make it easier to threshold.
Inputs:
gray_img = Grayscale image data
Returns:
img_eh = normalized image
:param gray_img: numpy.ndarray
:return img_eh: numpy.ndarray
"""
if len(np.shape(gray_img)) == 3:
fatal_error("Input image must be gray")
img_eh = cv2.equalizeHist(gray_img)
params.device += 1
if params.debug == 'print':
print_image(img_eh, os.path.join(params.debug_outdir, str(params.device) + '_hist_equal_img.png'))
elif params.debug == 'plot':
plot_image(img_eh, cmap='gray')
return img_eh
示例8: main
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import equalizeHist [as 別名]
def main():
# read an image
img = cv2.imread('../figures/_DSC2126.jpg')
img = cv2.resize(img, (600,400))
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# hist,bins = np.histogram(img[100:400, 100:400].flatten(),256,[0,256])
# cdf = hist.cumsum()
# cdf_normalized = cdf * hist.max()/ cdf.max()
# # plot hist normalized
# plot_hist_cdf(cdf_normalized, img[100:400, 100:400])
equ = cv2.equalizeHist(gray)
# create a CLAHE object (Arguments are optional).
clahe = cv2.createCLAHE()
cl1 = clahe.apply(gray)
plot_gray(gray, equ, cl1)
示例9: __call__
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import equalizeHist [as 別名]
def __call__(self, image, labels=None):
image[:,:,2] = cv2.equalizeHist(image[:,:,2])
if labels is None:
return image
else:
return image, labels
開發者ID:pierluigiferrari,項目名稱:data_generator_object_detection_2d,代碼行數:8,代碼來源:object_detection_2d_photometric_ops.py
示例10: normalize_grayimage
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import equalizeHist [as 別名]
def normalize_grayimage(image):
image = cv2.equalizeHist(image)
#cv2.imshow("Equalized img", image)
return image
示例11: normalize_grayimage
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import equalizeHist [as 別名]
def normalize_grayimage(image):
image = cv2.equalizeHist(image)
cv2.imshow("Equalized img", image)
return image
示例12: preprocess
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import equalizeHist [as 別名]
def preprocess(self, img, equalizeHist):
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
return (cv2.equalizeHist(gray) if equalizeHist else gray)
示例13: pre_process_image
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import equalizeHist [as 別名]
def pre_process_image(image):
#image = cv2.cvtColor(image, cv2.COLOR_BGR2YUV)
#print(image)
image[:,:,0] = cv2.equalizeHist(image[:,:,0])
image[:,:,1] = cv2.equalizeHist(image[:,:,1])
image[:,:,2] = cv2.equalizeHist(image[:,:,2])
image = image/255. - 0.5
return image
示例14: pre_process_image
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import equalizeHist [as 別名]
def pre_process_image(image):
#image = cv2.cvtColor(image, cv2.COLOR_BGR2YUV)
#print(image)
#image[:,:,0] = cv2.equalizeHist(image[:,:,0])
#image[:,:,1] = cv2.equalizeHist(image[:,:,1])
#image[:,:,2] = cv2.equalizeHist(image[:,:,2])
image = image/255.-0.5
return image
示例15: preprocess_yadav
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import equalizeHist [as 別名]
def preprocess_yadav(image):
'''
Pre-process the image given as a Numpy array
for the Yadav model.
:param image: the image as a numpy array
:return: a preprocessed image
'''
image = image.astype(np.uint8)
# image[:, :, 0] = cv2.equalizeHist(image[:, :, 0])
# image[:, :, 1] = cv2.equalizeHist(image[:, :, 1])
# image[:, :, 2] = cv2.equalizeHist(image[:, :, 2])
image = image/255. - 0.5
return image.astype(np.float32)