本文整理匯總了Python中cv2.ellipse2Poly方法的典型用法代碼示例。如果您正苦於以下問題:Python cv2.ellipse2Poly方法的具體用法?Python cv2.ellipse2Poly怎麽用?Python cv2.ellipse2Poly使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類cv2
的用法示例。
在下文中一共展示了cv2.ellipse2Poly方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: draw_limbs_2d
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import ellipse2Poly [as 別名]
def draw_limbs_2d(img, joints_2d, limb_parents, rect):
# draw skeleton
for limb_num in range(len(limb_parents)):
x1 = joints_2d[limb_num, 0]
y1 = joints_2d[limb_num, 1]
x2 = joints_2d[limb_parents[limb_num], 0]
y2 = joints_2d[limb_parents[limb_num], 1]
length = ((x1 - x2) ** 2 + (y1 - y2) ** 2) ** 0.5
deg = math.degrees(math.atan2(x1 - x2, y1 - y2))
# here round() returns float type, so use int() to convert it to integer type
polygon = cv2.ellipse2Poly((int(round((y1+y2)/2)), int(round((x1+x2)/2))),
(int(length/2), 3),
int(deg),
0, 360, 1)
img = cv2.fillConvexPoly(img, polygon, color=(49, 22, 122))
# draw rectangle
x, y, w, h = rect
pt1 = (x, y)
pt2 = (x + w, y + h)
cv2.rectangle(img, pt1, pt2, (60, 66, 207), 4)
return img
示例2: add_coco_hp
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import ellipse2Poly [as 別名]
def add_coco_hp(image, points, color):
for j in range(17):
cv2.circle(image,
(points[j, 0], points[j, 1]), 2, (int(color[0]), int(color[1]), int(color[2])), -1)
stickwidth = 2
cur_canvas = image.copy()
for j, e in enumerate(_kp_connections):
if points[e].min() > 0:
X = [points[e[0], 1], points[e[1], 1]]
Y = [points[e[0], 0], points[e[1], 0]]
mX = np.mean(X)
mY = np.mean(Y)
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
polygon = cv2.ellipse2Poly((int(mY),int(mX)), (int(length/2), stickwidth), int(angle), 0, 360, 1)
cv2.fillConvexPoly(cur_canvas, polygon, (int(color[0]), int(color[1]), int(color[2])))
image = cv2.addWeighted(image, 0.5, cur_canvas, 0.5, 0)
return image
示例3: add_coco_hp
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import ellipse2Poly [as 別名]
def add_coco_hp(self, points, points_prob, img_id='default'):
points = np.array(points, dtype=np.int32).reshape(self.num_joints, 2)
points_prob = np.array(points_prob, dtype=np.float32).reshape(self.num_joints)
for j in range(self.num_joints):
if points_prob[j]>0.:
cv2.circle(self.imgs[img_id],
(points[j, 0], points[j, 1]), 2, (255,255,255), -1)
stickwidth = 2
cur_canvas = self.imgs[img_id].copy()
for j, e in enumerate(self.edges):
if points_prob[e[0]] > 0. and points_prob[e[1]] > 0.:
X = [points[e[0], 1], points[e[1], 1]]
Y = [points[e[0], 0], points[e[1], 0]]
mX = np.mean(X)
mY = np.mean(Y)
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
polygon = cv2.ellipse2Poly((int(mY),int(mX)), (int(length/2), stickwidth), int(angle), 0, 360, 1)
cv2.fillConvexPoly(cur_canvas, polygon, (255, 255, 255))
self.imgs[img_id] = cv2.addWeighted(self.imgs[img_id], 0.8, cur_canvas, 0.2, 0)
示例4: create_label
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import ellipse2Poly [as 別名]
def create_label(shape, joint_list, person_to_joint_assoc):
label = np.zeros(shape, dtype=np.uint8)
cord_list = []
for limb_type in range(17):
for person_joint_info in person_to_joint_assoc:
joint_indices = person_joint_info[joint_to_limb_heatmap_relationship[limb_type]].astype(int)
if -1 in joint_indices:
continue
joint_coords = joint_list[joint_indices, :2]
coords_center = tuple(np.round(np.mean(joint_coords, 0)).astype(int))
cord_list.append(joint_coords[0])
limb_dir = joint_coords[0, :] - joint_coords[1, :]
limb_length = np.linalg.norm(limb_dir)
angle = math.degrees(math.atan2(limb_dir[1], limb_dir[0]))
polygon = cv2.ellipse2Poly(coords_center, (int(limb_length / 2), 4), int(angle), 0, 360, 1)
cv2.fillConvexPoly(label, polygon, limb_type+1)
return label,cord_list
示例5: draw_hand
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import ellipse2Poly [as 別名]
def draw_hand(full_img, joint_coords, is_loss_track):
if is_loss_track:
joint_coords = FLAGS.default_hand
# Plot joints
for joint_num in range(FLAGS.num_of_joints):
color_code_num = (joint_num // 4)
if joint_num in [0, 4, 8, 12, 16]:
joint_color = list(map(lambda x: x + 35 * (joint_num % 4), FLAGS.joint_color_code[color_code_num]))
cv2.circle(full_img, center=(int(joint_coords[joint_num][1]), int(joint_coords[joint_num][0])), radius=3,
color=joint_color, thickness=-1)
else:
joint_color = list(map(lambda x: x + 35 * (joint_num % 4), FLAGS.joint_color_code[color_code_num]))
cv2.circle(full_img, center=(int(joint_coords[joint_num][1]), int(joint_coords[joint_num][0])), radius=3,
color=joint_color, thickness=-1)
# Plot limbs
for limb_num in range(len(FLAGS.limbs)):
x1 = int(joint_coords[int(FLAGS.limbs[limb_num][0])][0])
y1 = int(joint_coords[int(FLAGS.limbs[limb_num][0])][1])
x2 = int(joint_coords[int(FLAGS.limbs[limb_num][1])][0])
y2 = int(joint_coords[int(FLAGS.limbs[limb_num][1])][1])
length = ((x1 - x2) ** 2 + (y1 - y2) ** 2) ** 0.5
if length < 150 and length > 5:
deg = math.degrees(math.atan2(x1 - x2, y1 - y2))
polygon = cv2.ellipse2Poly((int((y1 + y2) / 2), int((x1 + x2) / 2)),
(int(length / 2), 3),
int(deg),
0, 360, 1)
color_code_num = limb_num // 4
limb_color = list(map(lambda x: x + 35 * (limb_num % 4), FLAGS.joint_color_code[color_code_num]))
cv2.fillConvexPoly(full_img, polygon, color=limb_color)
開發者ID:timctho,項目名稱:convolutional-pose-machines-tensorflow,代碼行數:34,代碼來源:run_demo_hand_with_tracker.py
示例6: pose2im
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import ellipse2Poly [as 別名]
def pose2im(all_peaks, limbSeq, limb_colors, joint_colors, H, W, _circle=True, _limb=True, imtype=np.uint8):
canvas = np.zeros(shape=(H, W, 3))
canvas.fill(255)
if _circle:
for i in range(len(joint_colors)):
cv2.circle(canvas, (int(all_peaks[i][0]), int(all_peaks[i][1])), 2, joint_colors[i], thickness=2)
if _limb:
stickwidth = 2
for i in range(len(limbSeq)):
limb = limbSeq[i]
cur_canvas = canvas.copy()
point1_index = limb[0]
point2_index = limb[1]
if len(all_peaks[point1_index]) > 0 and len(all_peaks[point2_index]) > 0:
point1 = all_peaks[point1_index][0:2]
point2 = all_peaks[point2_index][0:2]
X = [point1[1], point2[1]]
Y = [point1[0], point2[0]]
mX = np.mean(X)
mY = np.mean(Y)
# cv2.line()
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
cv2.fillConvexPoly(cur_canvas, polygon, limb_colors[i])
canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
return canvas.astype(imtype)
示例7: findEllipses
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import ellipse2Poly [as 別名]
def findEllipses(edges):
contours, _ = cv2.findContours(edges.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
ellipseMask = np.zeros(edges.shape, dtype=np.uint8)
contourMask = np.zeros(edges.shape, dtype=np.uint8)
pi_4 = np.pi * 4
for i, contour in enumerate(contours):
if len(contour) < 5:
continue
area = cv2.contourArea(contour)
if area <= 100: # skip ellipses smaller then 10x10
continue
arclen = cv2.arcLength(contour, True)
circularity = (pi_4 * area) / (arclen * arclen)
ellipse = cv2.fitEllipse(contour)
poly = cv2.ellipse2Poly((int(ellipse[0][0]), int(ellipse[0][1])), (int(ellipse[1][0] / 2), int(ellipse[1][1] / 2)), int(ellipse[2]), 0, 360, 5)
# if contour is circular enough
if circularity > 0.6:
cv2.fillPoly(ellipseMask, [poly], 255)
continue
# if contour has enough similarity to an ellipse
similarity = cv2.matchShapes(poly.reshape((poly.shape[0], 1, poly.shape[1])), contour, cv2.cv.CV_CONTOURS_MATCH_I2, 0)
if similarity <= 0.2:
cv2.fillPoly(contourMask, [poly], 255)
return ellipseMask, contourMask
示例8: draw_limbs_2d
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import ellipse2Poly [as 別名]
def draw_limbs_2d(img, joints_2d, limb_parents):
for limb_num in range(len(limb_parents)-1):
x1 = joints_2d[limb_num, 0]
y1 = joints_2d[limb_num, 1]
x2 = joints_2d[limb_parents[limb_num], 0]
y2 = joints_2d[limb_parents[limb_num], 1]
length = ((x1 - x2) ** 2 + (y1 - y2) ** 2) ** 0.5
# if length < 10000 and length > 5:
deg = math.degrees(math.atan2(x1 - x2, y1 - y2))
polygon = cv2.ellipse2Poly((int((y1 + y2) / 2), int((x1 + x2) / 2)),
(int(length / 2), 3),
int(deg),
0, 360, 1)
cv2.fillConvexPoly(img, polygon, color=(0,255,0))
return img
示例9: draw
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import ellipse2Poly [as 別名]
def draw(joint_coords, label, thickness = 4):
coords_center = tuple(np.round(np.mean(joint_coords, 0)).astype(int))
limb_dir = joint_coords[0, :] - joint_coords[1, :]
limb_length = np.linalg.norm(limb_dir)
angle = math.degrees(math.atan2(limb_dir[1], limb_dir[0]))
polygon = cv2.ellipse2Poly(coords_center, (int(limb_length / 2), thickness), int(angle), 0, 360, 1)
x = label.copy()
cv2.fillConvexPoly(x, polygon, 1)
return x
示例10: create_face_label
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import ellipse2Poly [as 別名]
def create_face_label(shape , joints): #
shape = (shape[0], shape[1], 10)
label = np.zeros(shape, dtype=np.uint8)
for connection_type in range(len(face)):
for connection in face[connection_type]:
if min(joints[connection, 2]) < 0.01:
continue
joint_indices = joints[connection,:2].astype(int)
label[:,:,0] = draw(joint_indices[:, :2], label[:,:,0], thickness = 1)
# label[:,:,connection_type] = draw(joint_indices[:, :2], label[:,:,connection_type])
# fig = plt.figure(1)
# ax = fig.add_subplot(111)
# ax.imshow(label[:,:,0])
# plt.show()
x = label[:,:, 8].copy()
polygon = cv2.ellipse2Poly(tuple(joints[68,:2].astype(int)), (1, 1), 0, 0, 360, 1) #left eye
cv2.fillConvexPoly(x, polygon, 1)
label[:,:, 8] = x
x = label[:,:, 9].copy()
polygon = cv2.ellipse2Poly(tuple(joints[69,:2].astype(int)), (1, 1), 0, 0, 360, 1) #right eye
cv2.fillConvexPoly(x, polygon, 1)
label[:,:, 9] = x
return label
示例11: draw_limbs_2d
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import ellipse2Poly [as 別名]
def draw_limbs_2d(img, joints_2d, limb_parents):
for limb_num in range(len(limb_parents)-1):
x1 = joints_2d[limb_num, 0]
y1 = joints_2d[limb_num, 1]
x2 = joints_2d[limb_parents[limb_num], 0]
y2 = joints_2d[limb_parents[limb_num], 1]
length = ((x1 - x2) ** 2 + (y1 - y2) ** 2) ** 0.5
# if length < 10000 and length > 5:
deg = math.degrees(math.atan2(x1 - x2, y1 - y2))
polygon = cv2.ellipse2Poly((int((y1 + y2) / 2), int((x1 + x2) / 2)),
(int(length / 2), 3),
int(deg),
0, 360, 1)
cv2.fillConvexPoly(img, polygon, color=(0,255,0))
return
示例12: plot_pose
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import ellipse2Poly [as 別名]
def plot_pose(img_orig, joint_list, person_to_joint_assoc, bool_fast_plot=True, plot_ear_to_shoulder=False):
canvas = img_orig.copy() # Make a copy so we don't modify the original image
# to_plot is the location of all joints found overlaid on top of the
# original image
to_plot = canvas.copy() if bool_fast_plot else cv2.addWeighted(img_orig, 0.3, canvas, 0.7, 0)
limb_thickness = 4
# Last 2 limbs connect ears with shoulders and this looks very weird.
# Disabled by default to be consistent with original rtpose output
which_limbs_to_plot = NUM_LIMBS if plot_ear_to_shoulder else NUM_LIMBS - 2
for limb_type in range(which_limbs_to_plot):
for person_joint_info in person_to_joint_assoc:
joint_indices = person_joint_info[edges_body[limb_type]].astype(int)
if -1 in joint_indices:
# Only draw actual limbs (connected joints), skip if not
# connected
continue
# joint_coords[:,0] represents Y coords of both joints;
# joint_coords[:,1], X coords
joint_coords = joint_list[joint_indices, 0:2]
for joint in joint_coords: # Draw circles at every joint
cv2.circle(canvas, tuple(joint[0:2].astype(int)), 4, (255, 255, 255), thickness=-1)
# mean along the axis=0 computes meanYcoord and meanXcoord -> Round
# and make int to avoid errors
coords_center = tuple(np.round(np.mean(joint_coords, 0)).astype(int))
# joint_coords[0,:] is the coords of joint_src; joint_coords[1,:]
# is the coords of joint_dst
limb_dir = joint_coords[0, :] - joint_coords[1, :]
limb_length = np.linalg.norm(limb_dir)
# Get the angle of limb_dir in degrees using atan2(limb_dir_x,
# limb_dir_y)
angle = math.degrees(math.atan2(limb_dir[1], limb_dir[0]))
# For faster plotting, just plot over canvas instead of constantly
# copying it
cur_canvas = canvas if bool_fast_plot else canvas.copy()
polygon = cv2.ellipse2Poly(coords_center, (int(limb_length / 2), limb_thickness), int(angle), 0, 360, 1)
cv2.fillConvexPoly(cur_canvas, polygon, colors[limb_type])
if not bool_fast_plot:
canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
return to_plot, canvas
示例13: plot_pose
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import ellipse2Poly [as 別名]
def plot_pose(img_orig, joint_list, person_to_joint_assoc, bool_fast_plot=True, plot_ear_to_shoulder=False):
canvas = img_orig.copy() # Make a copy so we don't modify the original image
# to_plot is the location of all joints found overlaid on top of the
# original image
to_plot = canvas.copy() if bool_fast_plot else cv2.addWeighted(
img_orig, 0.3, canvas, 0.7, 0)
limb_thickness = 4
# Last 2 limbs connect ears with shoulders and this looks very weird.
# Disabled by default to be consistent with original rtpose output
which_limbs_to_plot = NUM_LIMBS if plot_ear_to_shoulder else NUM_LIMBS - 2
for limb_type in range(which_limbs_to_plot):
for person_joint_info in person_to_joint_assoc:
joint_indices = person_joint_info[joint_to_limb_heatmap_relationship[limb_type]].astype(
int)
if -1 in joint_indices:
# Only draw actual limbs (connected joints), skip if not
# connected
continue
# joint_coords[:,0] represents Y coords of both joints;
# joint_coords[:,1], X coords
joint_coords = joint_list[joint_indices, 0:2]
for joint in joint_coords: # Draw circles at every joint
cv2.circle(canvas, tuple(joint[0:2].astype(
int)), 4, (255,255,255), thickness=-1)
# mean along the axis=0 computes meanYcoord and meanXcoord -> Round
# and make int to avoid errors
coords_center = tuple(
np.round(np.mean(joint_coords, 0)).astype(int))
# joint_coords[0,:] is the coords of joint_src; joint_coords[1,:]
# is the coords of joint_dst
limb_dir = joint_coords[0, :] - joint_coords[1, :]
limb_length = np.linalg.norm(limb_dir)
# Get the angle of limb_dir in degrees using atan2(limb_dir_x,
# limb_dir_y)
angle = math.degrees(math.atan2(limb_dir[1], limb_dir[0]))
# For faster plotting, just plot over canvas instead of constantly
# copying it
cur_canvas = canvas if bool_fast_plot else canvas.copy()
polygon = cv2.ellipse2Poly(
coords_center, (int(limb_length / 2), limb_thickness), int(angle), 0, 360, 1)
cv2.fillConvexPoly(cur_canvas, polygon, colors[limb_type])
if not bool_fast_plot:
canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
return to_plot, canvas
示例14: plot_pose
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import ellipse2Poly [as 別名]
def plot_pose(img_orig, joint_list, person_to_joint_assoc, bool_fast_plot=True, plot_ear_to_shoulder=False):
canvas = (img_orig.copy()*255).astype('uint8') # Make a copy so we don't modify the original image
# to_plot is the location of all joints found overlaid on top of the
# original image
to_plot = canvas.copy() if bool_fast_plot else cv2.addWeighted(
img_orig, 0.3, canvas, 0.7, 0)
limb_thickness = 4
# Last 2 limbs connect ears with shoulders and this looks very weird.
# Disabled by default to be consistent with original rtpose output
which_limbs_to_plot = NUM_LIMBS
for limb_type in range(which_limbs_to_plot):
for person_joint_info in person_to_joint_assoc:
limb = joint_to_limb_heatmap_relationship[limb_type]
joint_indices = person_joint_info[[limb[0], limb[1]]].astype(
int)
if -1 in joint_indices:
# Only draw actual limbs (connected joints), skip if not
# connected
continue
# joint_coords[:,0] represents Y coords of both joints;
# joint_coords[:,1], X coords
joint_coords = joint_list[joint_indices, 0:2]
for joint in joint_coords: # Draw circles at every joint
cv2.circle(canvas, tuple(joint[0:2].astype(
int)), 4, (255, 255, 255), thickness=-1)
# mean along the axis=0 computes meanYcoord and meanXcoord -> Round
# and make int to avoid errors
coords_center = tuple(
np.round(np.mean(joint_coords, 0)).astype(int))
# joint_coords[0,:] is the coords of joint_src; joint_coords[1,:]
# is the coords of joint_dst
limb_dir = joint_coords[0, :] - joint_coords[1, :]
limb_length = np.linalg.norm(limb_dir)
# Get the angle of limb_dir in degrees using atan2(limb_dir_x,
# limb_dir_y)
angle = math.degrees(math.atan2(limb_dir[1], limb_dir[0]))
# For faster plotting, just plot over canvas instead of constantly
# copying it
cur_canvas = canvas if bool_fast_plot else canvas.copy()
polygon = cv2.ellipse2Poly(
coords_center, (int(limb_length / 2), limb_thickness), int(angle), 0, 360, 1)
cv2.fillConvexPoly(cur_canvas, polygon, colors[limb_type])
if not bool_fast_plot:
canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
return to_plot, canvas