本文整理匯總了Python中cv2.drawMatchesKnn方法的典型用法代碼示例。如果您正苦於以下問題:Python cv2.drawMatchesKnn方法的具體用法?Python cv2.drawMatchesKnn怎麽用?Python cv2.drawMatchesKnn使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類cv2
的用法示例。
在下文中一共展示了cv2.drawMatchesKnn方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: baseline_sift_matching
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import drawMatchesKnn [as 別名]
def baseline_sift_matching(img1, img2):
sift = cv2.xfeatures2d.SIFT_create()
kp1, des1 = sift.detectAndCompute(img1, None)
kp2, des2 = sift.detectAndCompute(img2, None)
matches = cv2.BFMatcher().knnMatch(des1, des2, k=2)
good = [[m] for m, n in matches if m.distance < 0.7*n.distance]
img3 = cv2.drawMatchesKnn(img1, kp1, img2, kp2, good, None,
matchColor=(0, 255, 0), matchesMask=None,
singlePointColor=(255, 0, 0), flags=0)
return img3
示例2: sift_pred
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import drawMatchesKnn [as 別名]
def sift_pred(cv2_sift, bf, query_kp, query_des, patch,
patch_kp=None, patch_des=None,
template_img=None, draw_matches=False, ratio=0.6, fp=False):
if patch_kp is None or patch_des is None:
patch_kp, patch_des = get_keypoints(cv2_sift, patch)
if patch_des is None:
match_list = []
else:
match_list = bf.knnMatch(query_des, patch_des, k=2)
match_list = [m for m in match_list if len(m) == 2]
# Apply ratio test
good = []
score = 0.0
for m, n in match_list:
if m.distance < ratio * n.distance:
good.append([m])
if not fp:
score += n.distance / np.maximum(m.distance, 0.01)
else:
if fp:
score += np.sqrt((m.distance / n.distance - ratio))
if draw_matches:
template_img = resize(template_img.copy())
if has_alpha(template_img):
template_img = blend_white(template_img)
if has_alpha(patch):
patch = blend_white(patch)
drawn_matches = cv2.drawMatchesKnn(template_img,
query_kp,
resize(patch),
patch_kp,
good, None, flags=2)
return score, len(good), drawn_matches
return score, len(good)
示例3: match_img_knn
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import drawMatchesKnn [as 別名]
def match_img_knn(queryImage, trainingImage, thread=0):
sift = cv2.xfeatures2d.SIFT_create() # 創建sift檢測器
kp1, des1 = sift.detectAndCompute(queryImage, None)
kp2, des2 = sift.detectAndCompute(trainingImage, None)
#print(len(kp1))
# 設置Flannde參數
FLANN_INDEX_KDTREE = 1
indexParams = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
searchParams = dict(checks=50)
flann = cv2.FlannBasedMatcher(indexParams, searchParams)
matches = flann.knnMatch(des1, des2, k=2)
good = []
# 設置好初始匹配值
matchesMask = [[0, 0] for i in range(len(matches))]
for i, (m, n) in enumerate(matches):
if m.distance < 0.7*n.distance: # 舍棄小於0.7的匹配結果
matchesMask[i] = [1, 0]
good.append(m)
s = sorted(good, key=lambda x: x.distance)
'''
drawParams=dict(matchColor=(0,0,255),singlePointColor=(255,0,0),matchesMask=matchesMask,flags=0) #給特征點和匹配的線定義顏色
resultimage=cv2.drawMatchesKnn(queryImage,kp1,trainingImage,kp2,matches,None,**drawParams) #畫出匹配的結果
cv2.imshow('res',resultimage)
cv2.waitKey(0)
'''
#print(len(good))
if len(good) > thread:
maxLoc = kp2[s[0].trainIdx].pt
#print(maxLoc)
return (int(maxLoc[0]), int(maxLoc[1]))
else:
return (0, 0)
示例4: debug_matching
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import drawMatchesKnn [as 別名]
def debug_matching(frame1, frame2, path_image1, path_image2, matches,
matches_mask, num_points, use_ratio_test):
img1 = cv2.imread(path_image1, 0)
img2 = cv2.imread(path_image2, 0)
kp1 = get_ocv_kpts_from_np(frame1['keypoints'][:num_points, :])
kp2 = get_ocv_kpts_from_np(frame2['keypoints'][:num_points, :])
if use_ratio_test:
img = cv2.drawMatchesKnn(img1, kp1, img2, kp2, matches, None,
matchColor=(0, 255, 0),
matchesMask=matches_mask,
singlePointColor=(255, 0, 0), flags=0)
else:
img = cv2.drawMatches(img1, kp1, img2, kp2, matches, None,
matchColor=(0, 255, 0),
singlePointColor=(255, 0, 0), flags=0)
img_sift = baseline_sift_matching(img1, img2)
fig = plt.figure(figsize=(2, 1))
fig.add_subplot(2, 1, 1)
plt.imshow(img)
plt.title('Custom features')
fig.add_subplot(2, 1, 2)
plt.imshow(img_sift)
plt.title('SIFT')
plt.show()
示例5: matchSift
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import drawMatchesKnn [as 別名]
def matchSift(imgA,imgB):
img1 = cv2.imread(imgA, 0)
img2 = cv2.imread(imgB, 0)
sift = cv2.xfeatures2d.SIFT_create()
kp1, des1 = sift.detectAndCompute(img1, None) #獲取SIFT關鍵點和描述子
kp2, des2 = sift.detectAndCompute(img2, None)
bf = cv2.BFMatcher()
matches = bf.knnMatch(des1, des2, k=2) #根據描述子匹配圖像,返回n個最佳匹配
"""
. @param k Count of best matches found per each query descriptor or less if a query descriptor has less than k possible matches in total.
The result of matches = bf.match(des1,des2) line is a list of DMatch objects. This DMatch object has following attributes:
DMatch.distance - Distance between descriptors. The lower, the better it is.
DMatch.trainIdx - Index of the descriptor in train descriptors
DMatch.queryIdx - Index of the descriptor in query descriptors
DMatch.imgIdx - Index of the train image.
參看:https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_matcher/py_matcher.html
"""
print(type(matches),matches[:2],(matches[0][0].distance,matches[0][1].distance))
good = []
for m, n in matches:
if m.distance < 0.75 * n.distance: #因為k=2,因此返回距離最近和次近關鍵點,比較最近和次近,滿足最近/次近<value,才被認為匹配。ratio test explained by D.Lowe in his paper
good.append([m])
imgM = cv2.drawMatchesKnn(img1, kp1, img2, kp2, good[0:int(1*len(good)):int(0.1*len(good))], None, flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
fig, ax=plt.subplots(figsize=(50,30))
ax.imshow(imgM), plt.show()
# cv2.imshow('matchSift',imgM)
# cv2.waitKey()
示例6: get_matches
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import drawMatchesKnn [as 別名]
def get_matches(self, train, corr):
train_img = cv2.imread(train, 0)
query_img = self.query
# Initiate SIFT detector
sift = cv2.xfeatures2d.SIFT_create()
# find the keypoints and descriptors with SIFT
kp1, des1 = sift.detectAndCompute(train_img, None)
kp2, des2 = sift.detectAndCompute(query_img, None)
if des1 is None or des2 is None:
return False
# create BFMatcher object
bf = cv2.BFMatcher()
try:
matches = bf.knnMatch(des1, des2, k=2)
except cv2.error:
return False
good_matches = []
cluster = []
for m, n in matches:
img2_idx = m.trainIdx
img1_idx = m.queryIdx
(x1, y1) = kp1[img1_idx].pt
(x2, y2) = kp2[img2_idx].pt
# print("Comare %d to %d and %d to %d" % (x1,x2,y1,y2))
if m.distance < 0.8 * n.distance and y2 > self.yThreshold and x2 < self.xThreshold:
good_matches.append([m])
cluster.append([int(x2), int(y2)])
if len(cluster) <= corr:
return False
self.kmeans = KMeans(n_clusters=1, random_state=0).fit(cluster)
new_cluster, new_matches = self.compare_distances(train_img, cluster, good_matches)
if len(new_cluster) == 0 or len(new_cluster) / len(cluster) < .5:
return False
img3 = cv2.drawMatchesKnn(
train_img, kp1, query_img, kp2, new_matches, None, flags=2)
if self._debug:
self.images.append(img3)
self.debug_matcher(img3)
return True
示例7: get_feature_point_list
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import drawMatchesKnn [as 別名]
def get_feature_point_list(
self, template_pic_object: np.ndarray, target_pic_object: np.ndarray
) -> typing.Sequence[Point]:
"""
compare via feature matching
:param template_pic_object:
:param target_pic_object:
:return:
"""
# IMPORTANT
# sift and surf can not be used in python >= 3.8
# so we switch it to ORB detector
# maybe not enough precisely now
# Initiate ORB detector
orb = cv2.ORB_create()
# find the keypoints and descriptors with ORB
template_kp, template_desc = orb.detectAndCompute(template_pic_object, None)
target_kp, target_desc = orb.detectAndCompute(target_pic_object, None)
# key points count
logger.debug(f"template key point count: {len(template_kp)}")
logger.debug(f"target key point count: {len(target_kp)}")
# find 2 points, which are the closest
# 找到幀和幀之間的一致性的過程就是在一個描述符集合(詢問集)中找另一個集合(相當於訓練集)的最近鄰。 這裏找到 每個描述符 的 最近鄰與次近鄰
# 一個正確的匹配會更接近第一個鄰居。換句話說,一個不正確的匹配,兩個鄰居的距離是相似的。因此,我們可以通過查看二者距離的不同來評判距匹配程度的好壞。
# more details: https://blog.csdn.net/liangjiubujiu/article/details/80418079
# flann = cv2.FlannBasedMatcher()
# matches = flann.knnMatch(template_desc, target_desc, k=2)
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
# 特征描述子匹配
matches = bf.knnMatch(template_desc, target_desc, k=1)
# matches are something like:
# [[<DMatch 0x12400a350>, <DMatch 0x12400a430>], [<DMatch 0x124d6a170>, <DMatch 0x124d6a450>]]
logger.debug(f"matches num: {len(matches)}")
# TODO here is a sample to show feature points
# temp = cv2.drawMatchesKnn(template_pic_object, kp1, target_pic_object, kp2, matches, None, flags=2)
# cv2.imshow('feature_points', temp)
# cv2.waitKey(0)
good = list()
if matches:
good = matches[0]
# get positions
point_list = list()
for each in good:
target_idx = each.trainIdx
each_point = Point(*target_kp[target_idx].pt)
point_list.append(each_point)
return point_list