當前位置: 首頁>>代碼示例>>Python>>正文


Python cv2.cvtColor方法代碼示例

本文整理匯總了Python中cv2.cvtColor方法的典型用法代碼示例。如果您正苦於以下問題:Python cv2.cvtColor方法的具體用法?Python cv2.cvtColor怎麽用?Python cv2.cvtColor使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在cv2的用法示例。


在下文中一共展示了cv2.cvtColor方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: main

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import cvtColor [as 別名]
def main():
	imagePath = "img.jpg"
	
	img = cv2.imread(imagePath)
	gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
	
	generate_histogram(gray)
	
	cv2.imwrite("before.jpg", gray)

	gray = cv2.equalizeHist(gray)
	
	generate_histogram(gray)
	
	cv2.imwrite("after.jpg",gray)
	
	return 0 
開發者ID:felipecorrea,項目名稱:pedestrian-haar-based-detector,代碼行數:19,代碼來源:histcomparison.py

示例2: __get_annotation__

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import cvtColor [as 別名]
def __get_annotation__(self, mask, image=None):

        _, contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

        segmentation = []
        for contour in contours:
            # Valid polygons have >= 6 coordinates (3 points)
            if contour.size >= 6:
                segmentation.append(contour.flatten().tolist())
        RLEs = cocomask.frPyObjects(segmentation, mask.shape[0], mask.shape[1])
        RLE = cocomask.merge(RLEs)
        # RLE = cocomask.encode(np.asfortranarray(mask))
        area = cocomask.area(RLE)
        [x, y, w, h] = cv2.boundingRect(mask)

        if image is not None:
            image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
            cv2.drawContours(image, contours, -1, (0,255,0), 1)
            cv2.rectangle(image,(x,y),(x+w,y+h), (255,0,0), 2)
            cv2.imshow("", image)
            cv2.waitKey(1)

        return segmentation, [x, y, w, h], area 
開發者ID:hazirbas,項目名稱:coco-json-converter,代碼行數:25,代碼來源:generate_coco_json.py

示例3: worker

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import cvtColor [as 別名]
def worker(input_q, output_q):
    # Load a (frozen) Tensorflow model into memory.
    fps = FPS().start()
    while True:
        myprint("updata start ", time.time())
        fps.update()
        myprint("updata end ", time.time())
        # global lock
        # if lock.acquire():
        #    lock.release()

        frame = input_q.get()
        myprint("out queue {} and input que size {} after input_q get".format(output_q.qsize(), input_q.qsize()), time.time())
        myprint("out queue {} and input que size {} after lock release ".format(output_q.qsize(), input_q.qsize()), time.time())
        myprint("face process start", time.time())
        # frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        out_frame = face_process(frame)
        myprint("out queue {} and input que size {}".format(output_q.qsize(), input_q.qsize()), time.time())
        output_q.put(out_frame)
        myprint("out queue {} and input que size {} ".format(output_q.qsize(), input_q.qsize()), time.time())

    fps.stop() 
開發者ID:matiji66,項目名稱:face-attendance-machine,代碼行數:24,代碼來源:facerec_from_webcam_mult_thread.py

示例4: augment_hsv

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import cvtColor [as 別名]
def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5):
    x = (np.random.uniform(-1, 1, 3) * np.array([hgain, sgain, vgain]) + 1).astype(np.float32)  # random gains
    img_hsv = (cv2.cvtColor(img, cv2.COLOR_BGR2HSV) * x.reshape((1, 1, 3))).clip(None, 255).astype(np.uint8)
    cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img)  # no return needed


# def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5):  # original version
#     # SV augmentation by 50%
#     img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)  # hue, sat, val
#
#     S = img_hsv[:, :, 1].astype(np.float32)  # saturation
#     V = img_hsv[:, :, 2].astype(np.float32)  # value
#
#     a = random.uniform(-1, 1) * sgain + 1
#     b = random.uniform(-1, 1) * vgain + 1
#     S *= a
#     V *= b
#
#     img_hsv[:, :, 1] = S if a < 1 else S.clip(None, 255)
#     img_hsv[:, :, 2] = V if b < 1 else V.clip(None, 255)
#     cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img)  # no return needed 
開發者ID:zbyuan,項目名稱:pruning_yolov3,代碼行數:23,代碼來源:datasets.py

示例5: __getitem__

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import cvtColor [as 別名]
def __getitem__(self, index, to_tensor=True):
    fn = self.image_fns[index]
    img = cv2.cvtColor(cv2.imread(fn, 1), cv2.COLOR_BGR2RGB)

    img, pad_top, pad_left = KuzushijiDataset.pad_to_ratio(img, ratio=1.5)
    h, w = img.shape[:2]
    # print(h / w, pad_left, pad_top)
    assert img.ndim == 3
    scaled_imgs = []
    for scale in self.scales:
      h_scale = int(scale * self.height)
      w_scale = int(scale * self.width)
      simg = cv2.resize(img, (w_scale, h_scale))

      if to_tensor:
        assert simg.ndim == 3, simg.ndim
        simg = simg.transpose((2, 0, 1))
        simg = th.from_numpy(simg.copy())

      scaled_imgs.append(simg)

    return scaled_imgs + [fn] 
開發者ID:see--,項目名稱:kuzushiji-recognition,代碼行數:24,代碼來源:data.py

示例6: _update_mean_shift_bookkeeping

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import cvtColor [as 別名]
def _update_mean_shift_bookkeeping(self, frame, box_grouped):
        """Preprocess all valid bounding boxes for mean-shift tracking

            This method preprocesses all relevant bounding boxes (those that
            have been detected by both mean-shift tracking and saliency) for
            the next mean-shift step.

            :param frame: current RGB input frame
            :param box_grouped: list of bounding boxes
        """
        hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

        self.object_roi = []
        self.object_box = []
        for box in box_grouped:
            (x, y, w, h) = box
            hsv_roi = hsv[y:y + h, x:x + w]
            mask = cv2.inRange(hsv_roi, np.array((0., 60., 32.)),
                               np.array((180., 255., 255.)))
            roi_hist = cv2.calcHist([hsv_roi], [0], mask, [180], [0, 180])
            cv2.normalize(roi_hist, roi_hist, 0, 255, cv2.NORM_MINMAX)

            self.object_roi.append(roi_hist)
            self.object_box.append(box) 
開發者ID:PacktPublishing,項目名稱:OpenCV-Computer-Vision-Projects-with-Python,代碼行數:26,代碼來源:tracking.py

示例7: ProcessFrame

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import cvtColor [as 別名]
def ProcessFrame(self, frame):
        # segment arm region
        segment = self.SegmentArm(frame)

        # make a copy of the segmented image to draw on
        draw = cv2.cvtColor(segment, cv2.COLOR_GRAY2RGB)

        # draw some helpers for correctly placing hand
        cv2.circle(draw,(self.imgWidth/2,self.imgHeight/2),3,[255,102,0],2)       
        cv2.rectangle(draw, (self.imgWidth/3,self.imgHeight/3), (self.imgWidth*2/3, self.imgHeight*2/3), [255,102,0],2)

        # find the hull of the segmented area, and based on that find the
        # convexity defects
        [contours,defects] = self.FindHullDefects(segment)

        # detect the number of fingers depending on the contours and convexity defects
        # draw defects that belong to fingers green, others red
        [nofingers,draw] = self.DetectNumberFingers(contours, defects, draw)

        # print number of fingers on image
        cv2.putText(draw, str(nofingers), (30,30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,255,255))
        return draw 
開發者ID:PacktPublishing,項目名稱:OpenCV-Computer-Vision-Projects-with-Python,代碼行數:24,代碼來源:chapter2.py

示例8: to_tensor

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import cvtColor [as 別名]
def to_tensor(pic):
    """Convert a ``numpy.ndarray`` image to tensor.

    See ``ToTensor`` for more details.

    Args:
        pic (numpy.ndarray): Image to be converted to tensor.

    Returns:
        Tensor: Converted image.
    """
    if _is_numpy_image(pic):
        if pic.ndim == 2:
            pic = cv2.cvtColor(pic, cv2.COLOR_GRAY2RGB)
        img = torch.from_numpy(pic.transpose((2, 0, 1)))
        # backward compatibility
        if isinstance(img, torch.ByteTensor):
            return img.float().div(255)
        else:
            return img
    else:
        raise TypeError('pic should be ndarray. Got {}.'.format(type(pic))) 
開發者ID:PistonY,項目名稱:torch-toolbox,代碼行數:24,代碼來源:functional.py

示例9: adjust_contrast

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import cvtColor [as 別名]
def adjust_contrast(img, contrast_factor):
    """Adjust contrast of an Image.

    Args:
        img (CV Image): CV Image to be adjusted.
        contrast_factor (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives a solid gray image, 1 gives the
            original image while 2 increases the contrast by a factor of 2.

    Returns:
        CV Image: Contrast adjusted image.
    """
    if not _is_numpy_image(img):
        raise TypeError('img should be CV Image. Got {}'.format(type(img)))

    im = img.astype(np.float32)
    mean = round(cv2.cvtColor(im, cv2.COLOR_RGB2GRAY).mean())
    im = (1 - contrast_factor) * mean + contrast_factor * im
    im = im.clip(min=0, max=255)
    return im.astype(img.dtype) 
開發者ID:PistonY,項目名稱:torch-toolbox,代碼行數:22,代碼來源:functional.py

示例10: adjust_saturation

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import cvtColor [as 別名]
def adjust_saturation(img, saturation_factor):
    """Adjust color saturation of an image.

    Args:
        img (CV Image): CV Image to be adjusted.
        saturation_factor (float):  How much to adjust the saturation. 0 will
            give a black and white image, 1 will give the original image while
            2 will enhance the saturation by a factor of 2.

    Returns:
        CV Image: Saturation adjusted image.
    """
    if not _is_numpy_image(img):
        raise TypeError('img should be CV Image. Got {}'.format(type(img)))

    im = img.astype(np.float32)
    degenerate = cv2.cvtColor(
        cv2.cvtColor(
            im,
            cv2.COLOR_RGB2GRAY),
        cv2.COLOR_GRAY2RGB)
    im = (1 - saturation_factor) * degenerate + saturation_factor * im
    im = im.clip(min=0, max=255)
    return im.astype(img.dtype) 
開發者ID:PistonY,項目名稱:torch-toolbox,代碼行數:26,代碼來源:functional.py

示例11: worker

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import cvtColor [as 別名]
def worker(input_q, output_q):
    # Load a (frozen) Tensorflow model into memory.
    detection_graph = tf.Graph()
    with detection_graph.as_default():
        od_graph_def = tf.GraphDef()
        with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
            serialized_graph = fid.read()
            od_graph_def.ParseFromString(serialized_graph)
            tf.import_graph_def(od_graph_def, name='')

        sess = tf.Session(graph=detection_graph)

    fps = FPS().start()
    while True:
        fps.update()
        frame = input_q.get()
        frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        output_q.put(detect_objects(frame_rgb, sess, detection_graph))

    fps.stop()
    sess.close() 
開發者ID:datitran,項目名稱:object_detector_app,代碼行數:23,代碼來源:object_detection_multithreading.py

示例12: draw_outputs

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import cvtColor [as 別名]
def draw_outputs(img, outputs, class_names=None):
    boxes, objectness, classes = outputs
    #boxes, objectness, classes = boxes[0], objectness[0], classes[0]
    wh = np.flip(img.shape[0:2])
    if img.ndim == 2 or img.shape[2] == 1:
        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
    min_wh = np.amin(wh)
    if min_wh <= 100:
        font_size = 0.5
    else:
        font_size = 1
    for i in range(classes.shape[0]):
        x1y1 = tuple((np.array(boxes[i][0:2]) * wh).astype(np.int32))
        x2y2 = tuple((np.array(boxes[i][2:4]) * wh).astype(np.int32))
        img = cv2.rectangle(img, x1y1, x2y2, (255, 0, 0), 1)
        img = cv2.putText(img, '{}'.format(int(classes[i])), x1y1, cv2.FONT_HERSHEY_COMPLEX_SMALL, font_size,
                          (0, 0, 255), 1)
    return img 
開發者ID:akkaze,項目名稱:tf2-yolo3,代碼行數:20,代碼來源:utils.py

示例13: draw_labels

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import cvtColor [as 別名]
def draw_labels(x, y, class_names=None):
    img = x.numpy()
    if img.ndim == 2 or img.shape[2] == 1:
        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
    boxes, classes = tf.split(y, (4, 1), axis=-1)
    classes = classes[..., 0]
    wh = np.flip(img.shape[0:2])
    min_wh = np.amin(wh)
    if min_wh <= 100:
        font_size = 0.5
    else:
        font_size = 1
    for i in range(len(boxes)):
        x1y1 = tuple((np.array(boxes[i][0:2]) * wh).astype(np.int32))
        x2y2 = tuple((np.array(boxes[i][2:4]) * wh).astype(np.int32))
        img = cv2.rectangle(img, x1y1, x2y2, (255, 0, 0), 1)
        if class_names:
            img = cv2.putText(img, class_names[classes[i]], x1y1, cv2.FONT_HERSHEY_COMPLEX_SMALL, font_size,
                              (0, 0, 255), 1)
        else:
            img = cv2.putText(img, str(classes[i]), x1y1, cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 1)
    return img 
開發者ID:akkaze,項目名稱:tf2-yolo3,代碼行數:24,代碼來源:utils.py

示例14: _augment

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import cvtColor [as 別名]
def _augment(self, img, r):
        old_dtype = img.dtype

        if img.ndim == 3:
            if self.rgb is not None:
                m = cv2.COLOR_RGB2GRAY if self.rgb else cv2.COLOR_BGR2GRAY
                grey = cv2.cvtColor(img.astype('float32'), m)
                mean = np.mean(grey)
            else:
                mean = np.mean(img, axis=(0, 1), keepdims=True)
        else:
            mean = np.mean(img)

        img = img * r + mean * (1 - r)
        if self.clip or old_dtype == np.uint8:
            img = np.clip(img, 0, 255)
        return img.astype(old_dtype) 
開發者ID:tensorpack,項目名稱:dataflow,代碼行數:19,代碼來源:imgproc.py

示例15: getPeakFeatures

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import cvtColor [as 別名]
def getPeakFeatures():
    net = DecafNet()

    features = numpy.zeros((number_sequences,feature_length))
    labels = numpy.zeros((number_sequences,1))
    counter = 0
    # Maybe sort them
    for participant in os.listdir(os.path.join(data_dir,image_dir)):
        for sequence in os.listdir(os.path.join(data_dir,image_dir, participant)):
            if sequence != ".DS_Store":
                image_files = sorted(os.listdir(os.path.join(data_dir,image_dir, participant,sequence)))
                image_file = image_files[-1]
                print counter, image_file
                imarray = cv2.imread(os.path.join(data_dir,image_dir, participant,sequence,image_file))
                imarray = cv2.cvtColor(imarray,cv2.COLOR_BGR2GRAY)
                scores = net.classify(imarray, center_only=True)
                features[counter] = net.feature(feature_level)#.flatten()
                label_file = open(os.path.join(data_dir,label_dir, participant,sequence,image_file[:-4]+"_emotion.txt"))
                labels[counter] = eval(label_file.read())
                label_file.close()
                counter += 1

    numpy.save("featuresPeak5",features)
    numpy.save("labelsPeak5",labels) 
開發者ID:Zebreu,項目名稱:ConvolutionalEmotion,代碼行數:26,代碼來源:emotionclassification.py


注:本文中的cv2.cvtColor方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。