當前位置: 首頁>>代碼示例>>Python>>正文


Python cv2.createCLAHE方法代碼示例

本文整理匯總了Python中cv2.createCLAHE方法的典型用法代碼示例。如果您正苦於以下問題:Python cv2.createCLAHE方法的具體用法?Python cv2.createCLAHE怎麽用?Python cv2.createCLAHE使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在cv2的用法示例。


在下文中一共展示了cv2.createCLAHE方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: prepare_cropped_sax_image

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import createCLAHE [as 別名]
def prepare_cropped_sax_image(sax_image, clahe=True, intermediate_crop=0, rotate=0):
    if rotate != 0:
        rot_mat = cv2.getRotationMatrix2D((sax_image.shape[0] / 2, sax_image.shape[0] / 2), rotate, 1)
        sax_image = cv2.warpAffine(sax_image, rot_mat, (sax_image.shape[0], sax_image.shape[1]))

    if intermediate_crop == 0:
        res = sax_image[settings.CROP_INDENT_Y:settings.CROP_INDENT_Y + settings.TARGET_CROP, settings.CROP_INDENT_X:settings.CROP_INDENT_X + settings.TARGET_CROP]
    else:
        crop_indent_y = settings.CROP_INDENT_Y - ((intermediate_crop - settings.TARGET_CROP) / 2)
        crop_indent_x = settings.CROP_INDENT_X - ((intermediate_crop - settings.TARGET_CROP) / 2)
        res = sax_image[crop_indent_y:crop_indent_y + intermediate_crop, crop_indent_x:crop_indent_x + intermediate_crop]
        res = cv2.resize(res, (settings.TARGET_CROP, settings.TARGET_CROP))

    if clahe:
        clahe = cv2.createCLAHE(tileGridSize=(1, 1))
        res = clahe.apply(res)
    return res 
開發者ID:juliandewit,項目名稱:kaggle_ndsb2,代碼行數:19,代碼來源:helpers.py

示例2: _random_clahe

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import createCLAHE [as 別名]
def _random_clahe(self, batch):
        """ Randomly perform Contrast Limited Adaptive Histogram Equalization on
        a batch of images """
        base_contrast = self._constants["clahe_base_contrast"]

        batch_random = np.random.rand(self._batchsize)
        indices = np.where(batch_random > self._config.get("color_clahe_chance", 50) / 100)[0]

        grid_bases = np.rint(np.random.uniform(0,
                                               self._config.get("color_clahe_max_size", 4),
                                               size=indices.shape[0])).astype("uint8")
        contrast_adjustment = (grid_bases * (base_contrast // 2))
        grid_sizes = contrast_adjustment + base_contrast
        logger.trace("Adjusting Contrast. Grid Sizes: %s", grid_sizes)

        clahes = [cv2.createCLAHE(clipLimit=2.0,  # pylint: disable=no-member
                                  tileGridSize=(grid_size, grid_size))
                  for grid_size in grid_sizes]

        for idx, clahe in zip(indices, clahes):
            batch[idx, :, :, 0] = clahe.apply(batch[idx, :, :, 0])
        return batch 
開發者ID:deepfakes,項目名稱:faceswap,代碼行數:24,代碼來源:training_data.py

示例3: equalize_light

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import createCLAHE [as 別名]
def equalize_light(image, limit=3, grid=(7,7), gray=False):
    if (len(image.shape) == 2):
        image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
        gray = True
    
    clahe = cv2.createCLAHE(clipLimit=limit, tileGridSize=grid)
    lab = cv2.cvtColor(image, cv2.COLOR_BGR2LAB)
    l, a, b = cv2.split(lab)

    cl = clahe.apply(l)
    limg = cv2.merge((cl,a,b))

    image = cv2.cvtColor(limg, cv2.COLOR_LAB2BGR)
    if gray: 
        image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

    return np.uint8(image) 
開發者ID:arthurflor23,項目名稱:surface-crack-detection,代碼行數:19,代碼來源:image.py

示例4: equalize_clahe_color

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import createCLAHE [as 別名]
def equalize_clahe_color(img):
    """Equalize the image splitting the image applying CLAHE to each channel
    and merging the results
    """

    cla = cv2.createCLAHE(clipLimit=4.0)
    channels = cv2.split(img)
    eq_channels = []
    for ch in channels:
        eq_channels.append(cla.apply(ch))

    eq_image = cv2.merge(eq_channels)
    return eq_image


# Create the dimensions of the figure and set title: 
開發者ID:PacktPublishing,項目名稱:Mastering-OpenCV-4-with-Python,代碼行數:18,代碼來源:clahe_histogram_equalization.py

示例5: resize_and_contrast

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import createCLAHE [as 別名]
def resize_and_contrast(in_dir, out_dir, target_size):
    check_and_mkdir(out_dir)
    clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))

    for subdir, dirs, files in os.walk(in_dir):
        for f in files:
            file_path = subdir + os.sep + f
            if (is_image(f)):
                img = cv2.imread(file_path, 0)
                resized_img = cv2.resize(img, (target_size, target_size), interpolation = cv2.INTER_CUBIC)
                class_dir = out_dir + os.sep + file_path.split("/")[-2]
                check_and_mkdir(class_dir)

                file_name = class_dir + os.sep + file_path.split("/")[-1]
                print(file_name)

                norm_image = cv2.normalize(resized_img, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F) * 256
                # norm_image = clahe.apply(resized_img)
                cv2.imwrite(file_name, norm_image)

# count the direct one-step sub directories (which will represent the class name) 
開發者ID:meliketoy,項目名稱:gradcam.pytorch,代碼行數:23,代碼來源:file_function.py

示例6: main

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import createCLAHE [as 別名]
def main():
    # read an image 
    img = cv2.imread('../figures/_DSC2126.jpg')
    img = cv2.resize(img, (600,400))
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    
    
    # hist,bins = np.histogram(img[100:400, 100:400].flatten(),256,[0,256])
    # cdf = hist.cumsum()
    # cdf_normalized = cdf * hist.max()/ cdf.max()
    
    # # plot hist normalized 
    # plot_hist_cdf(cdf_normalized, img[100:400, 100:400])
        
    equ = cv2.equalizeHist(gray)
    
    # create a CLAHE object (Arguments are optional).
    clahe = cv2.createCLAHE()
    cl1 = clahe.apply(gray)
    
    plot_gray(gray, equ, cl1) 
開發者ID:PacktPublishing,項目名稱:Practical-Computer-Vision,代碼行數:23,代碼來源:03_hist_equalize.py

示例7: FindWand

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import createCLAHE [as 別名]
def FindWand():
    global rval,old_frame,old_gray,p0,mask,color,ig,img,frame
    try:
        rval, old_frame = cam.read()
	cv2.flip(old_frame,1,old_frame)
        old_gray = cv2.cvtColor(old_frame,cv2.COLOR_BGR2GRAY)
        equalizeHist(old_gray)
	old_gray = GaussianBlur(old_gray,(9,9),1.5)
        dilate_kernel = np.ones(dilation_params, np.uint8)
        old_gray = cv2.dilate(old_gray, dilate_kernel, iterations=1)
        clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
        old_gray = clahe.apply(old_gray)
        #TODO: trained image recognition
        p0 = cv2.HoughCircles(old_gray,cv2.HOUGH_GRADIENT,3,50,param1=240,param2=8,minRadius=4,maxRadius=15)
	if p0 is not None:
            p0.shape = (p0.shape[1], 1, p0.shape[2])
            p0 = p0[:,:,0:2] 
            mask = np.zeros_like(old_frame)
            ig = [[0] for x in range(20)]
        print "finding..."
        threading.Timer(3, FindWand).start()
    except:
        e = sys.exc_info()[1]
        print "Error: %s" % e 
        exit 
開發者ID:sean-obrien,項目名稱:rpotter,代碼行數:27,代碼來源:rpotter.py

示例8: load_rgb

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import createCLAHE [as 別名]
def load_rgb(self, equalize=False):
        # print("Loading:", self.image_file)
        try:
            img_rgb = cv2.imread(self.image_file, flags=cv2.IMREAD_ANYCOLOR|cv2.IMREAD_ANYDEPTH|cv2.IMREAD_IGNORE_ORIENTATION)
            if equalize:
                # equalize val (essentially gray scale level)
                clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
                hsv = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2HSV)
                hue, sat, val = cv2.split(hsv)
                aeq = clahe.apply(val)
                # recombine
                hsv = cv2.merge((hue,sat,aeq))
                # convert back to rgb
                img_rgb = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
            h, w = img_rgb.shape[:2]
            self.node.setInt('height', h)
            self.node.setInt('width', w)
            return img_rgb

        except:
            print(self.image_file + ":\n" + "  rgb load error: " \
                + str(sys.exc_info()[1]))
            return None 
開發者ID:UASLab,項目名稱:ImageAnalysis,代碼行數:25,代碼來源:image.py

示例9: histogram_equalization

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import createCLAHE [as 別名]
def histogram_equalization(img):

    lab = cv2.cvtColor(img, cv2.COLOR_BGR2LAB)

    # -----Splitting the LAB image to different channels-------------------------
    l, a, b = cv2.split(lab)

    # -----Applying CLAHE to L-channel-------------------------------------------
    clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8, 8))
    cl = clahe.apply(l)

    # -----Merge the CLAHE enhanced L-channel with the a and b channel-----------
    limg = cv2.merge((cl, a, b))

    # -----Converting image from LAB Color model to RGB model--------------------
    final = cv2.cvtColor(limg, cv2.COLOR_LAB2BGR)

    return final 
開發者ID:baumgach,項目名稱:PHiSeg-code,代碼行數:20,代碼來源:phiseg_makegif_samples.py

示例10: clahe

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import createCLAHE [as 別名]
def clahe(filename):
    os.chdir(os.path.dirname(filename))
    print('Applying CLAHE, this might take awhile...')

    currentVideo = os.path.basename(filename)
    fileName, fileEnding = currentVideo.split('.',2)
    saveName = str('CLAHE_') + str(fileName) + str('.avi')
    cap = cv2.VideoCapture(currentVideo)
    imageWidth = int(cap.get(3))
    imageHeight = int(cap.get(4))
    fps = cap.get(cv2.CAP_PROP_FPS)
    fourcc = cv2.VideoWriter_fourcc(*'XVID')
    out = cv2.VideoWriter(saveName, fourcc, fps, (imageWidth, imageHeight), 0)
    try:
        while True:
            ret, image = cap.read()
            if ret == True:
                im = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
                claheFilter = cv2.createCLAHE(clipLimit=2, tileGridSize=(16, 16))
                claheCorrecttedFrame = claheFilter.apply(im)
                out.write(claheCorrecttedFrame)
                if cv2.waitKey(10) & 0xFF == ord('q'):
                    break
            else:
                print(str('Completed video ') + str(saveName))
                break
    except:
        print('clahe not applied')
    cap.release()
    out.release()
    cv2.destroyAllWindows()
    return saveName 
開發者ID:sgoldenlab,項目名稱:simba,代碼行數:34,代碼來源:tkinter_functions.py

示例11: clahe_auto

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import createCLAHE [as 別名]
def clahe_auto(directory):

    filesFound= []

    ########### FIND FILES ###########
    for i in os.listdir(directory):
        if i.__contains__(".mp4"):
            filesFound.append(i)

    os.chdir(directory)
    print('Applying CLAHE, this might take awhile...')

    for i in filesFound:
        currentVideo = i
        saveName = str('CLAHE_') + str(currentVideo[:-4]) + str('.avi')
        cap = cv2.VideoCapture(currentVideo)
        imageWidth = int(cap.get(3))
        imageHeight = int(cap.get(4))
        fps = cap.get(cv2.CAP_PROP_FPS)
        fourcc = cv2.VideoWriter_fourcc(*'XVID')
        out = cv2.VideoWriter(saveName, fourcc, fps, (imageWidth, imageHeight), 0)
        while True:
            ret, image = cap.read()
            if ret == True:
                im = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
                claheFilter = cv2.createCLAHE(clipLimit=2, tileGridSize=(16, 16))
                claheCorrecttedFrame = claheFilter.apply(im)
                out.write(claheCorrecttedFrame)
                if cv2.waitKey(10) & 0xFF == ord('q'):
                    break
            else:
                print(str('Completed video ') + str(saveName))
                break

    cap.release()
    out.release()
    cv2.destroyAllWindows()
    return saveName 
開發者ID:sgoldenlab,項目名稱:simba,代碼行數:40,代碼來源:process_videos_automation.py

示例12: clahe_batch

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import createCLAHE [as 別名]
def clahe_batch(directory):

    filesFound= []

    ########### FIND FILES ###########
    for i in os.listdir(directory):
        filesFound.append(i)

    os.chdir(directory)
    print('Applying CLAHE, this might take awhile...')

    for i in filesFound:
        currentVideo = i
        saveName = str('CLAHE_') + str(currentVideo[:-4]) + str('.avi')
        cap = cv2.VideoCapture(currentVideo)
        imageWidth = int(cap.get(3))
        imageHeight = int(cap.get(4))
        fps = cap.get(cv2.CAP_PROP_FPS)
        fourcc = cv2.VideoWriter_fourcc(*'XVID')
        out = cv2.VideoWriter(saveName, fourcc, fps, (imageWidth, imageHeight), 0)
        while True:
            ret, image = cap.read()
            if ret == True:
                im = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
                claheFilter = cv2.createCLAHE(clipLimit=2, tileGridSize=(16, 16))
                claheCorrecttedFrame = claheFilter.apply(im)
                out.write(claheCorrecttedFrame)
                if cv2.waitKey(10) & 0xFF == ord('q'):
                    break
            else:
                print(str('Completed video ') + str(saveName))
                break

    cap.release()
    out.release()
    cv2.destroyAllWindows()
    return saveName 
開發者ID:sgoldenlab,項目名稱:simba,代碼行數:39,代碼來源:process_videos_automation.py

示例13: clahe_queue

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import createCLAHE [as 別名]
def clahe_queue(files):

    filesFound= [files]
    os.chdir(os.path.dirname(files))
    print('Applying CLAHE, this might take awhile...')

    for i in filesFound:
        currentVideo = os.path.basename(i)
        saveName = str('CLAHE_') + str(currentVideo[:-4]) + str('.avi')
        cap = cv2.VideoCapture(currentVideo)
        imageWidth = int(cap.get(3))
        imageHeight = int(cap.get(4))
        fps = cap.get(cv2.CAP_PROP_FPS)
        fourcc = cv2.VideoWriter_fourcc(*'XVID')
        out = cv2.VideoWriter(saveName, fourcc, fps, (imageWidth, imageHeight), 0)
        while True:
            ret, image = cap.read()
            if ret == True:
                im = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
                claheFilter = cv2.createCLAHE(clipLimit=2, tileGridSize=(16, 16))
                claheCorrecttedFrame = claheFilter.apply(im)
                out.write(claheCorrecttedFrame)
                if cv2.waitKey(10) & 0xFF == ord('q'):
                    break
            else:
                print(str('Completed video ') + str(saveName))
                break

    cap.release()
    out.release()
    cv2.destroyAllWindows()
    return saveName 
開發者ID:sgoldenlab,項目名稱:simba,代碼行數:34,代碼來源:process_videos_automation.py

示例14: __apply_multi_threshold

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import createCLAHE [as 別名]
def __apply_multi_threshold(self, src):
        """Apply multi thresholding using LAB, HLS and HSV.

        Args:
            src (int): Input image BGR.
                       numpy.ndarray, (720, 1280, 3), 0~255

        Returns:
            dst (int): Output image.
                       numpy.ndarray, (720, 1280), 0~1

        """
        settings = []
        settings.append({'cspace': 'LAB', 'channel': 2, 'clipLimit': 2.0, 'threshold': 190})
        settings.append({'cspace': 'HLS', 'channel': 1, 'clipLimit': 1.0, 'threshold': 200})
        settings.append({'cspace': 'HSV', 'channel': 2, 'clipLimit': 3.0, 'threshold': 230})

        gray = cv2.cvtColor(src, cv2.COLOR_RGB2GRAY)
        dst = np.zeros_like(gray)
        for s in settings:
            color_t = getattr(cv2, 'COLOR_RGB2{}'.format(s['cspace']))
            gray = cv2.cvtColor(src, color_t)[:,:,s['channel']]
            
            clahe = cv2.createCLAHE(s['clipLimit'], tileGridSize=(8,8))
            norm_img = clahe.apply(gray)
            
            binary = np.zeros_like(norm_img)
            binary[(norm_img >= s['threshold']) & (norm_img <= 255)] = 1
            dst[(dst == 1) | (binary == 1)] = 1

        return dst 
開發者ID:YanbaruRobotics,項目名稱:PythonPilot,代碼行數:33,代碼來源:rule_based.py

示例15: histogram_equalization

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import createCLAHE [as 別名]
def histogram_equalization(images, adaptive=True):

    _images = np.array(images * 255, dtype = np.uint8)

    pool = ThreadPool(4)
    clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))

    def process_image(image):
        #print image.shape, image.dtype
        image = image.transpose(1,2,0)

        if adaptive:
            image[:,:,0] = clahe.apply(image[:,:,0])
            image[:,:,1] = clahe.apply(image[:,:,1])
            image[:,:,2] = clahe.apply(image[:,:,2])
        else:
            image[:,:,0] = cv2.equalizeHist(image[:,:,0])
            image[:,:,1] = cv2.equalizeHist(image[:,:,1])
            image[:,:,2] = cv2.equalizeHist(image[:,:,2])

        image = image.transpose(2,0,1)
        return image

    equalized = pool.map(process_image, _images)
    equalized = np.array(equalized, dtype=np.float32)/255.

    #visualize_data(np.append(images[:8],equalized[:8],axis=0).transpose(0,2,3,1))
    return equalized 
開發者ID:gzuidhof,項目名稱:luna16,代碼行數:30,代碼來源:util.py


注:本文中的cv2.createCLAHE方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。