本文整理匯總了Python中cv2.connectedComponentsWithStats方法的典型用法代碼示例。如果您正苦於以下問題:Python cv2.connectedComponentsWithStats方法的具體用法?Python cv2.connectedComponentsWithStats怎麽用?Python cv2.connectedComponentsWithStats使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類cv2
的用法示例。
在下文中一共展示了cv2.connectedComponentsWithStats方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: remove_small_objects
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import connectedComponentsWithStats [as 別名]
def remove_small_objects(img, min_size=150):
# find all your connected components (white blobs in your image)
nb_components, output, stats, centroids = cv2.connectedComponentsWithStats(img, connectivity=8)
# connectedComponentswithStats yields every seperated component with information on each of them, such as size
# the following part is just taking out the background which is also considered a component, but most of the time we don't want that.
sizes = stats[1:, -1]
nb_components = nb_components - 1
# your answer image
img2 = img
# for every component in the image, you keep it only if it's above min_size
for i in range(0, nb_components):
if sizes[i] < min_size:
img2[output == i + 1] = 0
return img2
示例2: refine_sil
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import connectedComponentsWithStats [as 別名]
def refine_sil(sil, min_pixel):
if len(sil.shape)==3:
sil = sil[:,:,0]
c3 = True
else:
c3 = False
sil[sil>0] = 255
nb_components, output, stats, centroids = \
cv2.connectedComponentsWithStats(sil, connectivity = 8)
sizes = stats[1:, -1]; nb_components = nb_components - 1
refined_sil = np.zeros((output.shape))
#for every component in the image, you keep it only if it's above min_size
for i in range(0, nb_components):
if sizes[i] >= min_pixel:
refined_sil[output == i + 1] = 255
if c3 is True:
refined_sil = np.stack((refined_sil,)*3, -1)
return refined_sil
# subdivide mesh to 4 times faces
示例3: _connect_components_analysis
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import connectedComponentsWithStats [as 別名]
def _connect_components_analysis(image):
"""
connect components analysis to remove the small components
:param image:
:return:
"""
if len(image.shape) == 3:
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
else:
gray_image = image
return cv2.connectedComponentsWithStats(gray_image, connectivity=8, ltype=cv2.CV_32S)
示例4: removeSmallComponents
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import connectedComponentsWithStats [as 別名]
def removeSmallComponents(image, threshold):
#find all your connected components (white blobs in your image)
nb_components, output, stats, centroids = cv2.connectedComponentsWithStats(image, connectivity=8)
sizes = stats[1:, -1]; nb_components = nb_components - 1
img2 = np.zeros((output.shape),dtype = np.uint8)
#for every component in the image, you keep it only if it's above threshold
for i in range(0, nb_components):
if sizes[i] >= threshold:
img2[output == i + 1] = 255
return img2
示例5: find_connected
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import connectedComponentsWithStats [as 別名]
def find_connected(score_map, threshold=0.7):
binary_map = (score_map > threshold).astype(np.uint8)
connectivity = 8
output = cv2.connectedComponentsWithStats(binary_map, connectivity=connectivity, ltype=cv2.CV_32S)
label_map = output[1]
# show_image(np.asarray(label_map * 100.0, np.uint8))
return np.max(label_map), label_map
示例6: _connect_components_analysis
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import connectedComponentsWithStats [as 別名]
def _connect_components_analysis(image):
"""
:param image:
:return:
"""
if len(image.shape) == 3:
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
else:
gray_image = image
return cv2.connectedComponentsWithStats(gray_image, connectivity=8, ltype=cv2.CV_32S)
示例7: split_mask_erode_dilate
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import connectedComponentsWithStats [as 別名]
def split_mask_erode_dilate(mask, kernel=k_3x3, k=3):
img_erosion = cv.erode(mask, kernel, iterations=k)
output = cv.connectedComponentsWithStats(img_erosion, 4, cv.CV_32S)
if output[0] < 2:
return [mask], output[1]
else:
masks_res = []
for idx in range(1, output[0]):
res_m = (output[1] == idx).astype(np.uint8)
res_m = cv.dilate(res_m, kernel, iterations=k)
if res_m.sum() > 5:
masks_res.append(res_m)
return masks_res, output[1]
示例8: get_mean_cell_size
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import connectedComponentsWithStats [as 別名]
def get_mean_cell_size(mask_contours):
nuclei_sizes = []
for mask_contour in mask_contours:
mask = mask_contour[:,:,0]
contour = mask_contour[:,:,1]
new_mask = (mask*255).astype(np.uint8)
new_contour = (contour*255).astype(np.uint8)
true_foreground = cv2.subtract(new_mask, new_contour)
output = cv2.connectedComponentsWithStats(true_foreground)
nuclei_sizes.append(np.mean(output[2][1:,cv2.CC_STAT_AREA]))
return nuclei_sizes
示例9: obj_histogram
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import connectedComponentsWithStats [as 別名]
def obj_histogram(self, mask, label):
# holders for predicted object and right object (easily calculate histogram)
predicted = []
labeled = []
# get connected components in label for each class
for i in range(self.num_classes):
# get binary image for this class
bin_lbl = np.zeros(label.shape)
bin_lbl[label == i] = 1
bin_lbl[label != i] = 0
# util.im_gray_plt(bin_lbl,'class '+str(i))
connectivity = 4
output = cv2.connectedComponentsWithStats(
bin_lbl.astype(np.uint8), connectivity, cv2.CV_32S)
num_components = output[0]
components = output[1]
stats = output[2]
centroids = output[3]
for j in range(1, num_components): # 0 is background (useless)
# only process if it has more than 50pix
if stats[j][cv2.CC_STAT_AREA] > 50:
# for each component in each class, see the class with the highest percentage of pixels
# make mask with just this component of this class
comp_mask = np.zeros(label.shape)
comp_mask[components == j] = 0
comp_mask[components != j] = 1
# mask the prediction
masked_prediction = np.ma.masked_array(mask, mask=comp_mask)
# get histogram and get the argmax that is not zero
class_hist, _ = np.histogram(masked_prediction.compressed(),
bins=self.num_classes, range=[0, self.num_classes])
max_class = np.argmax(class_hist)
# print("\nMax class: ",max_class," real: ",i)
# util.im_gray_plt(comp_mask)
# util.im_block()
# sum an entry to the containers depending on right or wrong
predicted.append(max_class)
labeled.append(i)
# for idx in range(len(predicted)):
# print(predicted[idx],labeled[idx])
# histogram to count right and wrong objects
histrange = np.array([[-0.5, self.num_classes - 0.5],
[-0.5, self.num_classes - 0.5]], dtype='float64')
h_now, _, _ = np.histogram2d(np.array(predicted),
np.array(labeled),
bins=self.num_classes,
range=histrange)
return h_now
示例10: train_gen
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import connectedComponentsWithStats [as 別名]
def train_gen(self, number_of_objects, number_of_trees):
"""
Generates cluster programs to be drawn in one image.
:param number_of_objects: Total number of objects to draw in one image
:param number_of_trees: total number of cluster to draw in one image
:return:
"""
num_objs = 0
programs = []
while num_objs < number_of_objects:
index = np.random.choice(len(self.train_substrings))
if num_objs + len(self.train_substrings[index].keys()) > number_of_objects:
required_indices = sorted(self.train_substrings[index].keys())[0:number_of_objects - num_objs]
cluster = {}
for r in required_indices:
p = self.train_substrings[index][r]
image = image_from_expressions([p,], stack_size=9, canvas_shape=[64, 64])
# Makes sure that the object created doesn't have disjoint parts,
# don't include the program, because it makes the analysis difficult.
nlabels, labels, stats, centroids = cv2.connectedComponentsWithStats(
np.array(image[0], dtype=np.uint8))
if nlabels > 2:
continue
cluster[r] = self.train_substrings[index][r]
if cluster:
programs.append(cluster)
num_objs += len(cluster.keys())
num_objs += len(cluster.keys())
else:
cluster = {}
for k, p in self.train_substrings[index].items():
image = image_from_expressions([p], stack_size=9, canvas_shape=[64, 64])
nlabels, labels, stats, centroids = cv2.connectedComponentsWithStats(
np.array(image[0], dtype=np.uint8))
if nlabels > 2:
continue
cluster[k] = p
if cluster:
programs.append(cluster)
num_objs += len(cluster.keys())
return programs
示例11: thresh
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import connectedComponentsWithStats [as 別名]
def thresh(img, conservative=0, min_blob_size=50):
'''
Get threshold to make mask using the otsus method, and apply a correction
passed in conservative (-100;100) as a percentage of th.
'''
# blur and get level using otsus
blur = cv2.GaussianBlur(img, (13, 13), 0)
level, _ = cv2.threshold(
blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_TRIANGLE)
# print("Otsus Level: ",level)
# change with conservative
level += conservative / 100.0 * level
# check boundaries
level = 255 if level > 255 else level
level = 0 if level < 0 else level
# mask image
_, mask = cv2.threshold(blur, level, 255, cv2.THRESH_BINARY)
# morph operators
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel)
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)
# remove small connected blobs
# find connected components
n_components, output, stats, centroids = cv2.connectedComponentsWithStats(
mask, connectivity=8)
# remove background class
sizes = stats[1:, -1]
n_components = n_components - 1
# remove blobs
mask_clean = np.zeros((output.shape))
# for every component in the image, keep it only if it's above min_blob_size
for i in range(0, n_components):
if sizes[i] >= min_blob_size:
mask_clean[output == i + 1] = 255
return mask_clean
示例12: getDetBoxes_core
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import connectedComponentsWithStats [as 別名]
def getDetBoxes_core(textmap, linkmap, text_threshold, link_threshold, low_text):
# prepare data
linkmap = linkmap.copy()
textmap = textmap.copy()
img_h, img_w = textmap.shape
""" labeling method """
ret, text_score = cv2.threshold(textmap, low_text, 1, 0)
ret, link_score = cv2.threshold(linkmap, link_threshold, 1, 0)
text_score_comb = np.clip(text_score + link_score, 0, 1)
nLabels, labels, stats, centroids = cv2.connectedComponentsWithStats(text_score_comb.astype(np.uint8), connectivity=4)
det = []
mapper = []
for k in range(1,nLabels):
# size filtering
size = stats[k, cv2.CC_STAT_AREA]
if size < 10: continue
# thresholding
if np.max(textmap[labels==k]) < text_threshold: continue
# make segmentation map
segmap = np.zeros(textmap.shape, dtype=np.uint8)
segmap[labels==k] = 255
segmap[np.logical_and(link_score==1, text_score==0)] = 0 # remove link area
x, y = stats[k, cv2.CC_STAT_LEFT], stats[k, cv2.CC_STAT_TOP]
w, h = stats[k, cv2.CC_STAT_WIDTH], stats[k, cv2.CC_STAT_HEIGHT]
niter = int(math.sqrt(size * min(w, h) / (w * h)) * 2)
sx, ex, sy, ey = x - niter, x + w + niter + 1, y - niter, y + h + niter + 1
# boundary check
if sx < 0 : sx = 0
if sy < 0 : sy = 0
if ex >= img_w: ex = img_w
if ey >= img_h: ey = img_h
kernel = cv2.getStructuringElement(cv2.MORPH_RECT,(1 + niter, 1 + niter))
segmap[sy:ey, sx:ex] = cv2.dilate(segmap[sy:ey, sx:ex], kernel)
# make box
np_contours = np.roll(np.array(np.where(segmap!=0)),1,axis=0).transpose().reshape(-1,2)
rectangle = cv2.minAreaRect(np_contours)
box = cv2.boxPoints(rectangle)
# align diamond-shape
w, h = np.linalg.norm(box[0] - box[1]), np.linalg.norm(box[1] - box[2])
box_ratio = max(w, h) / (min(w, h) + 1e-5)
if abs(1 - box_ratio) <= 0.1:
l, r = min(np_contours[:,0]), max(np_contours[:,0])
t, b = min(np_contours[:,1]), max(np_contours[:,1])
box = np.array([[l, t], [r, t], [r, b], [l, b]], dtype=np.float32)
# make clock-wise order
startidx = box.sum(axis=1).argmin()
box = np.roll(box, 4-startidx, 0)
box = np.array(box)
det.append(box)
mapper.append(k)
return det, labels, mapper
示例13: draw_binary_mask
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import connectedComponentsWithStats [as 別名]
def draw_binary_mask(
self, binary_mask, color=None, *, edge_color=None, text=None, alpha=0.5, area_threshold=0
):
"""
Args:
binary_mask (ndarray): numpy array of shape (H, W), where H is the image height and
W is the image width. Each value in the array is either a 0 or 1 value of uint8
type.
color: color of the mask. Refer to `matplotlib.colors` for a full list of
formats that are accepted. If None, will pick a random color.
edge_color: color of the polygon edges. Refer to `matplotlib.colors` for a
full list of formats that are accepted.
text (str): if None, will be drawn in the object's center of mass.
alpha (float): blending efficient. Smaller values lead to more transparent masks.
area_threshold (float): a connected component small than this will not be shown.
Returns:
output (VisImage): image object with mask drawn.
"""
if color is None:
color = random_color(rgb=True, maximum=1)
color = mplc.to_rgb(color)
has_valid_segment = False
binary_mask = binary_mask.astype("uint8") # opencv needs uint8
mask = GenericMask(binary_mask, self.output.height, self.output.width)
shape2d = (binary_mask.shape[0], binary_mask.shape[1])
if not mask.has_holes:
# draw polygons for regular masks
for segment in mask.polygons:
area = mask_util.area(mask_util.frPyObjects([segment], shape2d[0], shape2d[1]))
if area < (area_threshold or 0):
continue
has_valid_segment = True
segment = segment.reshape(-1, 2)
self.draw_polygon(segment, color=color, edge_color=edge_color, alpha=alpha)
else:
rgba = np.zeros(shape2d + (4,), dtype="float32")
rgba[:, :, :3] = color
rgba[:, :, 3] = (mask.mask == 1).astype("float32") * alpha
has_valid_segment = True
self.output.ax.imshow(rgba)
if text is not None and has_valid_segment:
# TODO sometimes drawn on wrong objects. the heuristics here can improve.
lighter_color = self._change_color_brightness(color, brightness_factor=0.7)
_num_cc, cc_labels, stats, centroids = cv2.connectedComponentsWithStats(binary_mask, 8)
largest_component_id = np.argmax(stats[1:, -1]) + 1
# draw text on the largest component, as well as other very large components.
for cid in range(1, _num_cc):
if cid == largest_component_id or stats[cid, -1] > _LARGE_MASK_AREA_THRESH:
# median is more stable than centroid
# center = centroids[largest_component_id]
center = np.median((cc_labels == cid).nonzero(), axis=1)[::-1]
self.draw_text(text, center, color=lighter_color)
return self.output
示例14: draw_binary_mask
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import connectedComponentsWithStats [as 別名]
def draw_binary_mask(
self, binary_mask, color=None, *, edge_color=None, text=None, alpha=0.5, area_threshold=4096
):
"""
Args:
binary_mask (ndarray): numpy array of shape (H, W), where H is the image height and
W is the image width. Each value in the array is either a 0 or 1 value of uint8
type.
color: color of the mask. Refer to `matplotlib.colors` for a full list of
formats that are accepted. If None, will pick a random color.
edge_color: color of the polygon edges. Refer to `matplotlib.colors` for a
full list of formats that are accepted.
text (str): if None, will be drawn in the object's center of mass.
alpha (float): blending efficient. Smaller values lead to more transparent masks.
area_threshold (float): a connected component small than this will not be shown.
Returns:
output (VisImage): image object with mask drawn.
"""
if color is None:
color = random_color(rgb=True, maximum=1)
if area_threshold is None:
area_threshold = 4096
has_valid_segment = False
binary_mask = binary_mask.astype("uint8") # opencv needs uint8
mask = GenericMask(binary_mask, self.output.height, self.output.width)
shape2d = (binary_mask.shape[0], binary_mask.shape[1])
if not mask.has_holes:
# draw polygons for regular masks
for segment in mask.polygons:
area = mask_util.area(mask_util.frPyObjects([segment], shape2d[0], shape2d[1]))
if area < area_threshold:
continue
has_valid_segment = True
segment = segment.reshape(-1, 2)
self.draw_polygon(segment, color=color, edge_color=edge_color, alpha=alpha)
else:
rgba = np.zeros(shape2d + (4,), dtype="float32")
rgba[:, :, :3] = color
rgba[:, :, 3] = (mask.mask == 1).astype("float32") * alpha
has_valid_segment = True
self.output.ax.imshow(rgba)
if text is not None and has_valid_segment:
# TODO sometimes drawn on wrong objects. the heuristics here can improve.
lighter_color = self._change_color_brightness(color, brightness_factor=0.7)
_num_cc, cc_labels, stats, centroids = cv2.connectedComponentsWithStats(binary_mask, 8)
largest_component_id = np.argmax(stats[1:, -1]) + 1
# draw text on the largest component, as well as other very large components.
for cid in range(1, _num_cc):
if cid == largest_component_id or stats[cid, -1] > _LARGE_MASK_AREA_THRESH:
# median is more stable than centroid
# center = centroids[largest_component_id]
center = np.median((cc_labels == cid).nonzero(), axis=1)[::-1]
self.draw_text(text, center, color=lighter_color)
return self.output
示例15: post_process_image
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import connectedComponentsWithStats [as 別名]
def post_process_image(image, mask, contour):
""" Watershed on the markers generated on the sure foreground to find all disconnected objects
The (mask - contour) is the true foreground. We set the contour to be unknown area.
Index of contour = -1
Index of unkown area = 0
Index of background = 1 -> set back to 0 after watershed
Index of found objects > 1
"""
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(5,5))
new_contour = (contour*255).astype(np.uint8)
new_mask = (mask*255).astype(np.uint8)
new_mask = cv2.morphologyEx(new_mask, cv2.MORPH_OPEN, kernel, iterations=1)
_, thresh_mask = cv2.threshold(new_mask,0,255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
_, thresh_contour = cv2.threshold(new_contour,0,255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
sure_background = cv2.dilate(thresh_mask,kernel,iterations=3)
sure_foreground = cv2.subtract(thresh_mask, thresh_contour)
mask_plus_contour = cv2.add(thresh_mask, thresh_contour)
mask_plus_contour = cv2.cvtColor(mask_plus_contour, cv2.COLOR_GRAY2RGB)
unknown = cv2.subtract(sure_background, sure_foreground)
# Marker labelling
output = cv2.connectedComponentsWithStats(sure_foreground)
labels = output[1]
stats = output[2]
# Add one to all labels so that sure background is not 0, 0 is considered unknown by watershed
# this way, watershed can distinguish unknown from the background
labels = labels + 1
labels[unknown==255] = 0
try:
# random walker on thresh_mask leads a lot higher mean IoU but lower LB
#labels = random_walker(thresh_mask, labels)
# random walker on thresh_mask leads lower mean IoU but higher LB
labels = random_walker(mask_plus_contour, labels, multichannel=True)
except:
labels = cv2.watershed(mask_plus_contour, labels)
labels[labels==-1] = 0
labels[labels==1] = 0
labels = labels -1
labels[labels==-1] = 0
# discard nuclei which are too big or too small
mean = np.mean(stats[1:,cv2.CC_STAT_AREA])
for i in range(1, labels.max()):
if stats[i, cv2.CC_STAT_AREA] > mean*10 or stats[i, cv2.CC_STAT_AREA] < mean/10:
labels[labels==i] = 0
labels = renumber_labels(labels)
return labels