當前位置: 首頁>>代碼示例>>Python>>正文


Python cv2.absdiff方法代碼示例

本文整理匯總了Python中cv2.absdiff方法的典型用法代碼示例。如果您正苦於以下問題:Python cv2.absdiff方法的具體用法?Python cv2.absdiff怎麽用?Python cv2.absdiff使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在cv2的用法示例。


在下文中一共展示了cv2.absdiff方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: segment

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import absdiff [as 別名]
def segment(image, threshold=25):
    global bg
    # find the absolute difference between background and current frame
    diff = cv2.absdiff(bg.astype("uint8"), image)

    # threshold the diff image so that we get the foreground
    thresholded = cv2.threshold(diff, threshold, 255, cv2.THRESH_BINARY)[1]

    # get the contours in the thresholded image
    (_, cnts, _) = cv2.findContours(thresholded.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

    # return None, if no contours detected
    if len(cnts) == 0:
        return
    else:
        # based on contour area, get the maximum contour which is the hand
        segmented = max(cnts, key=cv2.contourArea)
        return (thresholded, segmented)

#-----------------
# MAIN FUNCTION
#----------------- 
開發者ID:Gogul09,項目名稱:gesture-recognition,代碼行數:24,代碼來源:segment.py

示例2: main

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import absdiff [as 別名]
def main():
	capture = cv2.VideoCapture(0)
	_, image = capture.read()
	previous = image.copy()
	
	
	while (cv2.waitKey(1) < 0):
		_, image = capture.read()
		diff = cv2.absdiff(image, previous)
		#image = cv2.flip(image, 3)
		#image = cv2.norm(image)
		_, diff = cv2.threshold(diff, 32, 0, cv2.THRESH_TOZERO)
		_, diff = cv2.threshold(diff, 0, 255, cv2.THRESH_BINARY)
		
		diff = cv2.medianBlur(diff, 5)
		
		cv2.imshow('video', diff)
		previous = image.copy()
		
	capture.release()
	cv2.destroyAllWindows() 
開發者ID:petern3,項目名稱:crop_row_detection,代碼行數:23,代碼來源:camera_test.py

示例3: prediction

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import absdiff [as 別名]
def prediction(self, image):
        image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
        image = cv2.GaussianBlur(image, (21, 21), 0)
        if self.avg is None:
            self.avg = image.copy().astype(float)
        cv2.accumulateWeighted(image, self.avg, 0.5)
        frameDelta = cv2.absdiff(image, cv2.convertScaleAbs(self.avg))
        thresh = cv2.threshold(
                frameDelta, DELTA_THRESH, 255,
                cv2.THRESH_BINARY)[1]
        thresh = cv2.dilate(thresh, None, iterations=2)
        cnts = cv2.findContours(
                thresh.copy(), cv2.RETR_EXTERNAL,
                cv2.CHAIN_APPROX_SIMPLE)
        cnts = imutils.grab_contours(cnts)
        self.avg = image.copy().astype(float)
        return cnts 
開發者ID:cristianpb,項目名稱:object-detection,代碼行數:19,代碼來源:motion.py

示例4: diff_frames

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import absdiff [as 別名]
def diff_frames(self,previous_frame,image):
        '''
        diff value for two value,
        determin if to excute the detection

        :param previous_frame:  RGB  array
        :param image:           RGB  array
        :return:                True or False
        '''
        if previous_frame is None:
            return True
        else:

            _diff = cv2.absdiff(previous_frame, image)

            diff=np.sum(_diff)/previous_frame.shape[0]/previous_frame.shape[1]/3.

            if diff>self.diff_thres:
                return True
            else:
                return False 
開發者ID:610265158,項目名稱:Peppa_Pig_Face_Engine,代碼行數:23,代碼來源:facer.py

示例5: diff_rect

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import absdiff [as 別名]
def diff_rect(img1, img2, pos=None):
    """find counters include pos in differences between img1 & img2 (cv2 images)"""
    diff = cv2.absdiff(img1, img2)
    diff = cv2.GaussianBlur(diff, (3, 3), 0)
    edges = cv2.Canny(diff, 100, 200)
    _, thresh = cv2.threshold(edges, 0, 255, cv2.THRESH_BINARY)
    contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
    if not contours:
        return None
    contours.sort(key=lambda c: len(c))
    # no pos provide, just return the largest different area rect
    if pos is None:
        cnt = contours[-1]
        x0, y0, w, h = cv2.boundingRect(cnt)
        x1, y1 = x0+w, y0+h
        return (x0, y0, x1, y1)
    # else the rect should contain the pos
    x, y = pos
    for i in range(len(contours)):
        cnt = contours[-1-i]
        x0, y0, w, h = cv2.boundingRect(cnt)
        x1, y1 = x0+w, y0+h
        if x0 <= x <= x1 and y0 <= y <= y1:
            return (x0, y0, x1, y1) 
開發者ID:NetEaseGame,項目名稱:ATX,代碼行數:26,代碼來源:imutils.py

示例6: get_match_confidence

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import absdiff [as 別名]
def get_match_confidence(img1, img2, mask=None):
    if img1.shape != img2.shape:
        return False
    ## first try, using absdiff
    # diff = cv2.absdiff(img1, img2)
    # h, w, d = diff.shape
    # total = h*w*d
    # num = (diff<20).sum()
    # print 'is_match', total, num
    # return num > total*0.90
    if mask is not None:
        img1 = img1.copy()
        img1[mask!=0] = 0
        img2 = img2.copy()
        img2[mask!=0] = 0
    ## using match
    match = cv2.matchTemplate(img1, img2, cv2.TM_CCOEFF_NORMED)
    _, confidence, _, _ = cv2.minMaxLoc(match)
    # print confidence
    return confidence 
開發者ID:NetEaseGame,項目名稱:ATX,代碼行數:22,代碼來源:scene_detector.py

示例7: segment

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import absdiff [as 別名]
def segment(image, threshold=25):
    global bg
    # find the absolute difference between background and current frame
    diff = cv2.absdiff(bg.astype("uint8"), image)

    # threshold the diff image so that we get the foreground
    thresholded = cv2.threshold(diff, threshold, 255, cv2.THRESH_BINARY)[1]

    # get the contours in the thresholded image
    (_, cnts, _) = cv2.findContours(thresholded.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

    # return None, if no contours detected
    if len(cnts) == 0:
        return
    else:
        # based on contour area, get the maximum contour which is the hand
        segmented = max(cnts, key=cv2.contourArea)
        return (thresholded, segmented)

#--------------------------------------------------------------
# To count the number of fingers in the segmented hand region
#-------------------------------------------------------------- 
開發者ID:Gogul09,項目名稱:gesture-recognition,代碼行數:24,代碼來源:recognize.py

示例8: matchAB

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import absdiff [as 別名]
def matchAB(fileA, fileB):
    # 讀取圖像數據
    imgA = cv2.imread(fileA)
    imgB = cv2.imread(fileB)

    # 轉換成灰色
    grayA = cv2.cvtColor(imgA, cv2.COLOR_BGR2GRAY)
    grayB = cv2.cvtColor(imgB, cv2.COLOR_BGR2GRAY)

    # 獲取圖片A的大小
    height, width = grayA.shape

    # 取局部圖像,尋找匹配位置
    result_window = np.zeros((height, width), dtype=imgA.dtype)
    for start_y in range(0, height-100, 10):
        for start_x in range(0, width-100, 10):
            window = grayA[start_y:start_y+100, start_x:start_x+100]
            match = cv2.matchTemplate(grayB, window, cv2.TM_CCOEFF_NORMED)
            _, _, _, max_loc = cv2.minMaxLoc(match)
            matched_window = grayB[max_loc[1]:max_loc[1]+100, max_loc[0]:max_loc[0]+100]
            result = cv2.absdiff(window, matched_window)
            result_window[start_y:start_y+100, start_x:start_x+100] = result

    plt.imshow(result_window)
    plt.show() 
開發者ID:cangyan,項目名稱:image-detect,代碼行數:27,代碼來源:image_detect_02.py

示例9: segment

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import absdiff [as 別名]
def segment(image, threshold=25):
    global bg
    # find the absolute difference between background and current frame
    diff = cv2.absdiff(bg.astype("uint8"), image)

    # threshold the diff image so that we get the foreground
    thresholded = cv2.threshold(diff,
                                threshold,
                                255,
                                cv2.THRESH_BINARY)[1]

    # get the contours in the thresholded image
    (cnts, _) = cv2.findContours(thresholded.copy(),
                                    cv2.RETR_EXTERNAL,
                                    cv2.CHAIN_APPROX_SIMPLE)

    # return None, if no contours detected
    if len(cnts) == 0:
        return
    else:
        # based on contour area, get the maximum contour which is the hand
        segmented = max(cnts, key=cv2.contourArea)
        return (thresholded, segmented) 
開發者ID:SparshaSaha,項目名稱:Hand-Gesture-Recognition-Using-Background-Elllimination-and-Convolution-Neural-Network,代碼行數:25,代碼來源:ContinuousGesturePredictor.py

示例10: segment

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import absdiff [as 別名]
def segment(image, threshold=25):
    global bg
    # find the absolute difference between background and current frame
    diff = cv2.absdiff(bg.astype("uint8"), image)

    # threshold the diff image so that we get the foreground
    thresholded = cv2.threshold(diff,
                                threshold,
                                255,
                                cv2.THRESH_BINARY)[1]

    # get the contours in the thresholded image
    (cnts, _) = cv2.findContours(thresholded.copy(),
                                 cv2.RETR_EXTERNAL,
                                 cv2.CHAIN_APPROX_SIMPLE)

    # return None, if no contours detected
    if len(cnts) == 0:
        return
    else:
        # based on contour area, get the maximum contour which is the hand
        segmented = max(cnts, key=cv2.contourArea)
        return (thresholded, segmented) 
開發者ID:SparshaSaha,項目名稱:Hand-Gesture-Recognition-Using-Background-Elllimination-and-Convolution-Neural-Network,代碼行數:25,代碼來源:PalmTracker.py

示例11: background_subtraction

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import absdiff [as 別名]
def background_subtraction(previous_frame, frame_resized_grayscale, min_area):
    """
    This function returns 1 for the frames in which the area
    after subtraction with previous frame is greater than minimum area
    defined.
    Thus expensive computation of human detection face detection
    and face recognition is not done on all the frames.
    Only the frames undergoing significant amount of change (which is controlled min_area)
    are processed for detection and recognition.
    """
    frameDelta = cv2.absdiff(previous_frame, frame_resized_grayscale)
    thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]
    thresh = cv2.dilate(thresh, None, iterations=2)
    im2, cnts, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    temp = 0
    for c in cnts:
        # if the contour is too small, ignore it
        if cv2.contourArea(c) > min_area:
            temp = 1
    return temp 
開發者ID:ITCoders,項目名稱:Human-detection-and-Tracking,代碼行數:22,代碼來源:main.py

示例12: motion1

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import absdiff [as 別名]
def motion1(new_frame, base):
    motion = cv2.absdiff(base, new_frame)
    gray = cv2.cvtColor(motion, cv2.COLOR_BGR2GRAY)
    cv2.imshow('motion', gray)
    ret, motion_mask = cv2.threshold(gray, 25, 255, cv2.THRESH_BINARY_INV)

    blendsize = (3,3)
    kernel = np.ones(blendsize,'uint8')
    motion_mask = cv2.erode(motion_mask, kernel)

    # lots
    motion_mask /= 1.1429
    motion_mask += 16

    # medium
    #motion_mask /= 1.333
    #motion_mask += 32

    # minimal
    #motion_mask /= 2
    #motion_mask += 64

    cv2.imshow('motion1', motion_mask)
    return motion_mask 
開發者ID:UASLab,項目名稱:ImageAnalysis,代碼行數:26,代碼來源:1a-est-gyro-rates.py

示例13: motion3

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import absdiff [as 別名]
def motion3(frame, counter):
    global last_frame
    global static_mask
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    if last_frame is None:
        pass
    else:
        diff = cv2.absdiff(gray, last_frame)
        cv2.imshow('motion3', diff)
        if static_mask is None:
            static_mask = np.float32(diff)
        else:
            if counter > 1000:
                c = float(1000)
            else:
                c = float(counter)
            f = float(c - 1) / c
            static_mask = f*static_mask + (1.0 - f)*np.float32(diff)
        mask_uint8 = np.uint8(static_mask)
        cv2.imshow('mask3', mask_uint8)
        ret, newmask = cv2.threshold(mask_uint8, 2, 255, cv2.THRESH_BINARY)
        cv2.imshow('newmask', newmask)
    last_frame = gray

# average of frames (the stationary stuff should be the sharpest) 
開發者ID:UASLab,項目名稱:ImageAnalysis,代碼行數:27,代碼來源:1a-est-gyro-rates.py

示例14: FMCenterSurroundDiff

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import absdiff [as 別名]
def FMCenterSurroundDiff(self, GaussianMaps):
        dst = list()
        for s in range(2, 5):
            now_size = GaussianMaps[s].shape
            now_size = (now_size[1], now_size[0]) # (width, height)
            tmp = cv2.resize(GaussianMaps[s + 3], now_size, interpolation=cv2.INTER_LINEAR)
            nowdst = cv2.absdiff(GaussianMaps[s], tmp)
            dst.append(nowdst)
            tmp = cv2.resize(GaussianMaps[s + 4], now_size, interpolation=cv2.INTER_LINEAR)
            nowdst = cv2.absdiff(GaussianMaps[s], tmp)
            dst.append(nowdst)

        return dst


    # Constructing a Gaussian pyramid + taking center-surround differences 
開發者ID:aalto-ui,項目名稱:aim,代碼行數:18,代碼來源:pySaliencyMap.py

示例15: motionDetected

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import absdiff [as 別名]
def motionDetected(self, new_frame):
        frame = self.preprocessInputFrame(new_frame)

        gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
        gray = cv.GaussianBlur(gray, (21, 21), 0)

        if self.prevFrame is None:
            self.prevFrame = gray
            return False

        frameDiff = cv.absdiff(gray, self.prevFrame)

        # kernel = np.ones((5, 5), np.uint8)

        opening = cv.morphologyEx(frameDiff, cv.MORPH_OPEN, None)  # noqa
        closing = cv.morphologyEx(frameDiff, cv.MORPH_CLOSE, None)  # noqa

        ret1, th1 = cv.threshold(frameDiff, 10, 255, cv.THRESH_BINARY)

        height = np.size(th1, 0)
        width = np.size(th1, 1)

        nb = cv.countNonZero(th1)

        avg = (nb * 100) / (height * width)  # Calculate the average of black pixel in the image

        self.prevFrame = gray

        # cv.DrawContours(currentframe, self.currentcontours, (0, 0, 255), (0, 255, 0), 1, 2, cv.CV_FILLED)
        # cv.imshow("frame", current_frame)

        ret = avg > self.threshold   # If over the ceiling trigger the alarm

        if ret:
            self.updateMotionDetectionDts()

        return ret 
開發者ID:JFF-Bohdan,項目名稱:pynvr,代碼行數:39,代碼來源:motion_detection.py


注:本文中的cv2.absdiff方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。