當前位置: 首頁>>代碼示例>>Python>>正文


Python cv2.KNearest方法代碼示例

本文整理匯總了Python中cv2.KNearest方法的典型用法代碼示例。如果您正苦於以下問題:Python cv2.KNearest方法的具體用法?Python cv2.KNearest怎麽用?Python cv2.KNearest使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在cv2的用法示例。


在下文中一共展示了cv2.KNearest方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import KNearest [as 別名]
def __init__(self):
        collect_dir = 'captcha/collect'
        label = []
        train_file = []
        for i in os.listdir(collect_dir):
            for y in os.listdir(collect_dir + '/' + i):
                #print i
                label.append(ord(i))
                #print y
                train_file.append(collect_dir + '/' + i + '/' + y)
        train_data = [cv2.imread(i, 0) for i in train_file]
        train = np.array(train_data).reshape(-1, 400).astype(np.float32)
        label = np.array(label).reshape(-1)
        self.knn = cv2.KNearest()
        self.knn.train(train, label) 
開發者ID:zzh1996,項目名稱:ustc-grade-automatic-notification,代碼行數:17,代碼來源:newknn.py

示例2: __init__

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import KNearest [as 別名]
def __init__(self, k = 3):
        self.k = k
        self.model = cv2.KNearest() 
開發者ID:fatcloud,項目名稱:PyCV-time,代碼行數:5,代碼來源:digits.py

示例3: train

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import KNearest [as 別名]
def train(self, samples, responses):
        self.model = cv2.KNearest()
        self.model.train(samples, responses) 
開發者ID:fatcloud,項目名稱:PyCV-time,代碼行數:5,代碼來源:digits.py

示例4: __init__

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import KNearest [as 別名]
def __init__(self):
        self.model = cv2.KNearest() 
開發者ID:fatcloud,項目名稱:PyCV-time,代碼行數:4,代碼來源:letter_recog.py

示例5: main

# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import KNearest [as 別名]
def main():
    opencv_haystack =cv2.imread('adam.jpg')
    opencv_needle = cv2.imread('adam_rightnostril.jpg')
    ngrey = cv2.cvtColor(opencv_needle, cv2.COLOR_BGR2GRAY)
    hgrey = cv2.cvtColor(opencv_haystack, cv2.COLOR_BGR2GRAY)
    import pdb
    pdb.set_trace()
    # build feature detector and descriptor extractor
    hessian_threshold = 175
    detector = cv2.SURF(hessian_threshold)
    (hkeypoints, hdescriptors) = detector.detect(hgrey, None, useProvidedKeypoints = False)
    (nkeypoints, ndescriptors) = detector.detect(ngrey, None, useProvidedKeypoints = False)

    # extract vectors of size 64 from raw descriptors numpy arrays
    rowsize = len(hdescriptors) / len(hkeypoints)
    if rowsize > 1:
        hrows = numpy.array(hdescriptors, dtype = numpy.float32).reshape((-1, rowsize))
        nrows = numpy.array(ndescriptors, dtype = numpy.float32).reshape((-1, rowsize))
        print "haystack rows shape", hrows.shape
        print "needle rows shape", nrows.shape
    else:
        print '*****************************************************8888'
        hrows = numpy.array(hdescriptors, dtype = numpy.float32)
        nrows = numpy.array(ndescriptors, dtype = numpy.float32)
        rowsize = len(hrows[0])

    # kNN training - learn mapping from hrow to hkeypoints index
    samples = hrows
    responses = numpy.arange(len(hkeypoints), dtype = numpy.float32)
    print "sample length", len(samples), "response length", len(responses)
    knn = cv2.KNearest()
    knn.train(samples,responses)

    # retrieve index and value through enumeration
    for i, descriptor in enumerate(nrows):
        descriptor = numpy.array(descriptor, dtype = numpy.float32).reshape((1, rowsize))
        print i, 'descriptor shape', descriptor.shape, 'sample shape', samples[0].shape
        retval, results, neigh_resp, dists = knn.find_nearest(descriptor, 1)
        res, dist =  int(results[0][0]), dists[0][0]
        print 'result', res, 'distance', dist

        if dist < 0.1:
            # draw matched keypoints in red color
            color = (0, 0, 255)
        else:
            # draw unmatched in blue color
            color = (255, 0, 0)
        # draw matched key points on haystack image
        x,y = hkeypoints[res].pt
        center = (int(x),int(y))
        cv2.circle(opencv_haystack,center,2,color,-1)
        # draw matched key points on needle image
        x,y = nkeypoints[i].pt
        center = (int(x),int(y))
        cv2.circle(opencv_needle,center,2,color,-1)

    cv2.imshow('haystack',opencv_haystack)
    cv2.imshow('needle',opencv_needle)
    cv2.waitKey(0)
    cv2.destroyAllWindows() 
開發者ID:LukeAllen,項目名稱:optimeyes,代碼行數:62,代碼來源:adam_descriptors.py


注:本文中的cv2.KNearest方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。