本文整理匯總了Python中cv2.HuMoments方法的典型用法代碼示例。如果您正苦於以下問題:Python cv2.HuMoments方法的具體用法?Python cv2.HuMoments怎麽用?Python cv2.HuMoments使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類cv2
的用法示例。
在下文中一共展示了cv2.HuMoments方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: calculate_contour_features
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import HuMoments [as 別名]
def calculate_contour_features(contour):
"""Calculates interesting properties (features) of a contour.
We use these features to match shapes (contours). In this script,
we are interested in finding shapes in our input image that look like
a corner. We do that by calculating the features for many contours
in the input image and comparing these to the features of the corner
contour. By design, we know exactly what the features of the real corner
contour look like - check out the calculate_corner_features function.
It is crucial for these features to be invariant both to scale and rotation.
In other words, we know that a corner is a corner regardless of its size
or rotation. In the past, this script implemented its own features, but
OpenCV offers much more robust scale and rotational invariant features
out of the box - the Hu moments.
"""
moments = cv2.moments(contour)
return cv2.HuMoments(moments)
示例2: HuMoments
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import HuMoments [as 別名]
def HuMoments(m: List[int]) -> List[int]:
"""
Calculates seven Hu invariants
"""
# If image is not a single channel image convert it
if len(m.shape) != 2:
m = cv2.cvtColor(m, cv2.COLOR_BGR2GRAY)
m = cv2.moments(m)
hu_moments = cv2.HuMoments(m).flatten()
return hu_moments
示例3: get_hu_moments
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import HuMoments [as 別名]
def get_hu_moments(arr):
arr = invert_binary_image(arr)
if arr.shape != (32, 32):
arr.shape = (32, 32)
m = moments(arr.astype(np.float64), binaryImage=True)
hu = HuMoments(m)
return hu.flatten()
示例4: fd_hu_moments
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import HuMoments [as 別名]
def fd_hu_moments(image):
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
feature = cv2.HuMoments(cv2.moments(image)).flatten()
return feature
# feature-descriptor-2: Haralick Texture
示例5: _getBlobFeatures
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import HuMoments [as 別名]
def _getBlobFeatures(blob_cnt, blob_mask, roi_image, roi_corner):
if blob_cnt.size > 0:
area = float(cv2.contourArea(blob_cnt))
# find use the best rotated bounding box, the fitEllipse function produces bad results quite often
# this method is better to obtain an estimate of the worm length than
# eccentricity
(CMx, CMy), (L, W), angle = cv2.minAreaRect(blob_cnt)
#adjust CM from the ROI reference frame to the image reference
CMx += roi_corner[0]
CMy += roi_corner[1]
if L == 0 or W == 0:
return None #something went wrong abort
if W > L:
L, W = W, L # switch if width is larger than length
quirkiness = np.sqrt(1 - W**2 / L**2)
hull = cv2.convexHull(blob_cnt) # for the solidity
solidity = area / cv2.contourArea(hull)
perimeter = float(cv2.arcLength(blob_cnt, True))
compactness = 4 * np.pi * area / (perimeter**2)
# calculate the mean intensity of the worm
intensity_mean, intensity_std = cv2.meanStdDev(roi_image, mask=blob_mask)
intensity_mean = intensity_mean[0,0]
intensity_std = intensity_std[0,0]
# calculate hu moments, they are scale and rotation invariant
hu_moments = cv2.HuMoments(cv2.moments(blob_cnt))
# save everything into the the proper output format
mask_feats = (CMx,
CMy,
area,
perimeter,
L,
W,
quirkiness,
compactness,
angle,
solidity,
intensity_mean,
intensity_std,
*hu_moments.flatten())
else:
return tuple([np.nan]*19)
return mask_feats