本文整理匯總了Python中cv2.CascadeClassifier方法的典型用法代碼示例。如果您正苦於以下問題:Python cv2.CascadeClassifier方法的具體用法?Python cv2.CascadeClassifier怎麽用?Python cv2.CascadeClassifier使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類cv2
的用法示例。
在下文中一共展示了cv2.CascadeClassifier方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: detect_face
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import CascadeClassifier [as 別名]
def detect_face(img_path, cc_path='../files/haarcascade_frontalface_default.xml'):
"""
Detect the face from the image, return colored face
"""
cc = cv2.CascadeClassifier(os.path.abspath(cc_path))
img_path = os.path.abspath(img_path)
img = cv2.imread(img_path)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = cc.detectMultiScale(gray, 1.3, 5)
roi_color = None
if len(faces) == 0:
logging.exception(img_path + ': No face found')
else:
x,y,w,h = faces[0]
_h, _w = compute_size(h, w)
roi_color = img[y - _h:y + h + _h, x - _w:x + w + _w]
return roi_color
示例2: main
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import CascadeClassifier [as 別名]
def main(url, quality='best', fps=30.0):
face_cascade = cv2.CascadeClassifier(os.path.join(cv2.haarcascades, 'haarcascade_frontalface_default.xml'))
stream_url = stream_to_url(url, quality)
log.info("Loading stream {0}".format(stream_url))
cap = cv2.VideoCapture(stream_url)
frame_time = int((1.0 / fps) * 1000.0)
while True:
try:
ret, frame = cap.read()
if ret:
frame_f = detect_faces(face_cascade, frame, scale_factor=1.2)
cv2.imshow('frame', frame_f)
if cv2.waitKey(frame_time) & 0xFF == ord('q'):
break
else:
break
except KeyboardInterrupt:
break
cv2.destroyAllWindows()
cap.release()
示例3: discern
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import CascadeClassifier [as 別名]
def discern(img):
grayImg = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# OpenCV人臉識別分類器
classifier = cv2.CascadeClassifier(
"C:\Python36\Lib\site-packages\opencv-master\data\haarcascades\haarcascade_frontalface_default.xml"
)
color = (0, 255, 0) # 定義繪製顏色
# 調用識別人臉
faceRects = classifier.detectMultiScale(
grayImg, scaleFactor=1.2, minNeighbors=3, minSize=(32, 32))
if len(faceRects): # 大於0則檢測到人臉
for faceRect in faceRects: # 單獨框出每一張人臉
x, y, w, h = faceRect
# 框出人臉
cv2.rectangle(img, (x, y), (x + h, y + w), color, 2)
cv2.imshow("image", img) # 顯示圖像
示例4: __init__
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import CascadeClassifier [as 別名]
def __init__(self, expiration=5, nbs=5, scale=1.1, inset=150, min_size=10, model_file=face_mdl):
self.count = 0
self.eps = 1e-6
self.activity = []
self.expiration = expiration
self.id = utils.id_gen()
self.q = deque(maxlen=10)
self.cubit_q = deque(maxlen=50)
self.skeleton_color = tuple([random.randint(0, 255) for _ in range(3)]) #skeleton_color
self.faces = []
self.detector = cv2.CascadeClassifier(model_file)
self.nbs = nbs
self.scale = scale
self.inset = inset
self.min_size = (min_size, min_size)
return
示例5: detectFaces
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import CascadeClassifier [as 別名]
def detectFaces(image_name):
starttime=time.time()
img = cv2.imread(image_name)
face_cascade = cv2.CascadeClassifier(root+"model/haarcascade_frontalface_default.xml")
if img.ndim == 3:
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
else:
gray = img #if語句:如果img維度為3,說明不是灰度圖,先轉化為灰度圖gray,如果不為3,也就是2,原圖就是灰度圖
faces = face_cascade.detectMultiScale(gray, 1.2, 5)#1.3和5是特征的最小、最大檢測窗口,它改變檢測結果也會改變
result = "["
for (x,y,width,height) in faces:
result+= '{ "x":'+ str(x) +' ,"y":'+ str(y) +' ,"height":'+ str(height)+',"width":'+ str(width)+' } ' +','
endtime=time.time()
result=result[:-1]+']'
return '{"status":true, "data":'+ result +' ,"msg":"成功","runtime":'+ str(endtime-starttime)+'}'
#api返回函數
示例6: __init__
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import CascadeClassifier [as 別名]
def __init__(self, cascade_file = './resources/haarcascade_frontalface_default.xml',
min_size = (10, 10),
min_neighbors = 20,
scale_factor = 1.04,
angles = [0],
thr = 0.4,
cascade_type = 'haar'):
'''
cascade_type - is a string defining the type of cascade
'''
print expand_path('.')
self.cascade_file = cascade_file.rsplit('/',1)[1]
self._cascade_classifier = cv2.CascadeClassifier(cascade_file)
self.scale_factor = scale_factor
self.min_neighbors = min_neighbors
self.min_size = min_size
self.cascade_type = cascade_type
self.angles = angles
self.thr = thr
示例7: face_recognize
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import CascadeClassifier [as 別名]
def face_recognize(self):
src = self.cv_read_img(self.src_file)
if src is None:
return
gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
face_cascade = cv.CascadeClassifier('haarcascade_frontalface_alt2.xml')
faces = face_cascade.detectMultiScale(
gray,
scaleFactor=1.15,
minNeighbors=3,
minSize=(5, 5)
)
for (x, y, w, h) in faces:
cv.rectangle(src, (x, y), (x + w, y + h), (0, 255, 0), 2)
self.decode_and_show_dst(src)
示例8: trainimg
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import CascadeClassifier [as 別名]
def trainimg():
recognizer = cv2.face.LBPHFaceRecognizer_create()
global detector
detector = cv2.CascadeClassifier("haarcascade_frontalface_default.xml")
try:
global faces,Id
faces, Id = getImagesAndLabels("TrainingImage")
except Exception as e:
l='please make "TrainingImage" folder & put Images'
Notification.configure(text=l, bg="SpringGreen3", width=50, font=('times', 18, 'bold'))
Notification.place(x=350, y=400)
recognizer.train(faces, np.array(Id))
try:
recognizer.save("TrainingImageLabel\Trainner.yml")
except Exception as e:
q='Please make "TrainingImageLabel" folder'
Notification.configure(text=q, bg="SpringGreen3", width=50, font=('times', 18, 'bold'))
Notification.place(x=350, y=400)
res = "Model Trained" # +",".join(str(f) for f in Id)
Notification.configure(text=res, bg="SpringGreen3", width=50, font=('times', 18, 'bold'))
Notification.place(x=250, y=400)
示例9: getFaceCoordinates
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import CascadeClassifier [as 別名]
def getFaceCoordinates(image):
cascade = cv2.CascadeClassifier(CASCADE_PATH)
img_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
img_gray = cv2.equalizeHist(img_gray)
rects = cascade.detectMultiScale(
img_gray,
scaleFactor=1.1,
minNeighbors=3,
minSize=(48, 48)
)
# For now, we only deal with the case that we detect one face.
if(len(rects) != 1) :
return None
face = rects[0]
bounding_box = [face[0], face[1], face[0] + face[2], face[1] + face[3]]
# return map((lambda x: x), bounding_box)
return bounding_box
開發者ID:a514514772,項目名稱:Real-Time-Facial-Expression-Recognition-with-DeepLearning,代碼行數:23,代碼來源:face_detection_utilities.py
示例10: detect
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import CascadeClassifier [as 別名]
def detect(img_file, detector_xml_path, dest_img_file):
img = cv2.imread(img_file)
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
detector = cv2.CascadeClassifier(detector_xml_path)
min_size = (min(50, gray_img.shape[0] // 10), min(50, gray_img.shape[1] // 10))
hits = detector.detectMultiScale(gray_img, 1.1, 4, 0, min_size)
#cv2.groupRectangles(hits, 2)
print(hits)
hits_img = np.copy(img)
for (x,y,w,h) in hits:
cv2.rectangle(hits_img, (x,y), (x+w, y+h), (0,0,255), 2)
cv2.imwrite(dest_img_file, hits_img)
示例11: recognize
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import CascadeClassifier [as 別名]
def recognize(self, image_path, identity):
face_recognizer = cv2.face.LBPHFaceRecognizer_create()
try:
face_recognizer.read(self.face_recognizer_file)
except:
messagebox.showerror('Error', "The class has no data to recongnize from\nor has not been trained yet")
return "No Training Data"
test_img = cv2.imread(image_path)
test_img_gray = cv2.cvtColor(test_img, cv2.COLOR_BGR2GRAY)
clf = cv2.CascadeClassifier(self.xml_file)
all_detected = self.detect_faces(clf, test_img, 1.2)
students_in_pic = set()
for (x, y, w, h) in all_detected:
label, conf = face_recognizer.predict(test_img_gray[y:y + w, x:x + h])
# print(conf)
cv2.waitKey(0)
label_text = identity[label]
students_in_pic.add(identity[label])
cv2.rectangle(test_img, (x, y), (x + w, y + h), (0, 255, 0), 2)
cv2.putText(test_img, label_text, (x, y - 5), cv2.FONT_HERSHEY_PLAIN, 1.0, (0, 255, 0), 2)
cv2.imshow("Students in this picture", test_img)
cv2.waitKey(0)
cv2.destroyAllWindows()
return list(students_in_pic)
示例12: main
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import CascadeClassifier [as 別名]
def main():
#IMG PATHS
imagePath = "test3.jpg"
cascPath = "cascades/haarcascade_pedestrian.xml"
pplCascade = cv2.CascadeClassifier(cascPath)
image = cv2.imread(imagePath)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
gray = normalize_grayimage(gray)
pedestrians = pplCascade.detectMultiScale(
gray,
scaleFactor=1.2,
minNeighbors=10,
minSize=(32,96),
flags = cv2.cv.CV_HAAR_SCALE_IMAGE
)
print "Found {0} ppl!".format(len(pedestrians))
#Draw a rectangle around the detected objects
for (x, y, w, h) in pedestrians:
cv2.rectangle(image, (x, y), (x+w, y+h), (0, 255, 0), 2)
cv2.imwrite("saida.jpg", image)
cv2.imshow("Ppl found", image)
cv2.waitKey(0)
return 0
示例13: getPeakFaceFeatures
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import CascadeClassifier [as 別名]
def getPeakFaceFeatures():
net = DecafNet()
cascade = cv2.CascadeClassifier('haarcascade_frontalface_alt2.xml')
features = numpy.zeros((number_sequences,feature_length))
labels = numpy.zeros((number_sequences,1))
counter = 0
# Maybe sort them
for participant in os.listdir(os.path.join(data_dir,image_dir)):
for sequence in os.listdir(os.path.join(data_dir,image_dir, participant)):
if sequence != ".DS_Store":
image_files = sorted(os.listdir(os.path.join(data_dir,image_dir, participant,sequence)))
image_file = image_files[-1]
print counter, image_file
imarray = cv2.imread(os.path.join(data_dir,image_dir, participant,sequence,image_file))
imarray = cv2.cvtColor(imarray,cv2.COLOR_BGR2GRAY)
rects = cascade.detectMultiScale(imarray, 1.3, 3, cv2.cv.CV_HAAR_SCALE_IMAGE, (150,150))
if len(rects) > 0:
facerect=rects[0]
imarray = imarray[facerect[1]:facerect[1]+facerect[3], facerect[0]:facerect[0]+facerect[2]]
scores = net.classify(imarray, center_only=True)
features[counter] = net.feature(feature_level).flatten()
label_file = open(os.path.join(data_dir,label_dir, participant,sequence,image_file[:-4]+"_emotion.txt"))
labels[counter] = eval(label_file.read())
label_file.close()
counter += 1
numpy.save("featuresPeakFace5",features)
numpy.save("labelsPeakFace5",labels)
示例14: detectFaces
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import CascadeClassifier [as 別名]
def detectFaces(frame):
cascPath = "../data/haarcascade_frontalface_default.xml"
faceCascade = cv2.CascadeClassifier(cascPath)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
detected_faces = faceCascade.detectMultiScale(
gray,
scaleFactor=1.1,
minNeighbors=6,
minSize=(50, 50),
flags=cv2.CASCADE_SCALE_IMAGE)
return gray, detected_faces
開發者ID:its-izhar,項目名稱:Emotion-Recognition-Using-SVMs,代碼行數:13,代碼來源:Train Classifier and Test Video Feed.py
示例15: __init__
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import CascadeClassifier [as 別名]
def __init__(self):
# self.model = cv2.CascadeClassifier(
# "models/cascade/fullbody_recognition_model.xml")
# self.model = cv2.CascadeClassifier(
# "models/cascade/upperbody_recognition_model.xml")
self.model = cv2.CascadeClassifier(
"models/cascade/facial_recognition_model.xml")
self.colors = np.random.uniform(0, 255, size=(100, 3))