本文整理匯總了Python中cv2.Canny方法的典型用法代碼示例。如果您正苦於以下問題:Python cv2.Canny方法的具體用法?Python cv2.Canny怎麽用?Python cv2.Canny使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類cv2
的用法示例。
在下文中一共展示了cv2.Canny方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: canny
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import Canny [as 別名]
def canny(filepathname, left=70, right=140):
v = cv2.imread(filepathname)
s = cv2.cvtColor(v, cv2.COLOR_BGR2GRAY)
s = cv2.Canny(s, left, right)
cv2.imshow('nier',s)
return s
# 圈出最小方矩形框,這裏Canny算法後都是白色線條,所以取色範圍 127-255 即可。
# ret, binary = cv2.threshold(s,127,255,cv2.THRESH_BINARY)
# contours, hierarchy = cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
# for c in contours:
# x,y,w,h = cv2.boundingRect(c)
# if w>5 and h>10: # 有約束的畫框
# cv2.rectangle(v,(x,y),(x+w,y+h),(155,155,0),1)
# # cv2.drawContours(s,contours,-1,(0,0,255),3) # 畫所有框
# cv2.imshow('nier2',v)
# cv2.waitKey()
# cv2.destroyAllWindows()
示例2: find_squares
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import Canny [as 別名]
def find_squares(img):
img = cv2.GaussianBlur(img, (5, 5), 0)
squares = []
for gray in cv2.split(img):
for thrs in xrange(0, 255, 26):
if thrs == 0:
bin = cv2.Canny(gray, 0, 50, apertureSize=5)
bin = cv2.dilate(bin, None)
else:
retval, bin = cv2.threshold(gray, thrs, 255, cv2.THRESH_BINARY)
bin, contours, hierarchy = cv2.findContours(bin, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
for cnt in contours:
cnt_len = cv2.arcLength(cnt, True)
cnt = cv2.approxPolyDP(cnt, 0.02*cnt_len, True)
if len(cnt) == 4 and cv2.contourArea(cnt) > 1000 and cv2.isContourConvex(cnt):
cnt = cnt.reshape(-1, 2)
max_cos = np.max([angle_cos( cnt[i], cnt[(i+1) % 4], cnt[(i+2) % 4] ) for i in xrange(4)])
if max_cos < 0.1:
squares.append(cnt)
return squares
示例3: detect_lines
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import Canny [as 別名]
def detect_lines(self, canny_low_thresh, canny_high_thresh, canny_kernel_size,
hough_rho_res, hough_theta_res, hough_votes_thresh,
gray_conversion=cv2.COLOR_BGR2GRAY):
"""
Detect lines in input image using hough transform.
Return detected lines as list with tuples:
(rho, theta, normalized theta with 0 <= theta_norm < np.pi, DIRECTION_VERTICAL or DIRECTION_HORIZONTAL)
"""
self.gray_img = cv2.cvtColor(self.input_img, gray_conversion)
self.edges = cv2.Canny(self.gray_img, canny_low_thresh, canny_high_thresh, apertureSize=canny_kernel_size)
# detect lines with hough transform
lines = cv2.HoughLines(self.edges, hough_rho_res, hough_theta_res, hough_votes_thresh)
if lines is None:
lines = []
self.lines_hough = self._generate_hough_lines(lines)
return self.lines_hough
示例4: make_edge_smooth
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import Canny [as 別名]
def make_edge_smooth(dataset_name, img_size) :
check_folder('./dataset/{}/{}'.format(dataset_name, 'trainB_smooth'))
file_list = glob('./dataset/{}/{}/*.*'.format(dataset_name, 'trainB'))
save_dir = './dataset/{}/trainB_smooth'.format(dataset_name)
kernel_size = 5
kernel = np.ones((kernel_size, kernel_size), np.uint8)
gauss = cv2.getGaussianKernel(kernel_size, 0)
gauss = gauss * gauss.transpose(1, 0)
for f in tqdm(file_list) :
file_name = os.path.basename(f)
bgr_img = cv2.imread(f)
gray_img = cv2.imread(f, 0)
bgr_img = cv2.resize(bgr_img, (img_size, img_size))
pad_img = np.pad(bgr_img, ((2, 2), (2, 2), (0, 0)), mode='reflect')
gray_img = cv2.resize(gray_img, (img_size, img_size))
edges = cv2.Canny(gray_img, 100, 200)
dilation = cv2.dilate(edges, kernel)
gauss_img = np.copy(bgr_img)
idx = np.where(dilation != 0)
for i in range(np.sum(dilation != 0)):
gauss_img[idx[0][i], idx[1][i], 0] = np.sum(
np.multiply(pad_img[idx[0][i]:idx[0][i] + kernel_size, idx[1][i]:idx[1][i] + kernel_size, 0], gauss))
gauss_img[idx[0][i], idx[1][i], 1] = np.sum(
np.multiply(pad_img[idx[0][i]:idx[0][i] + kernel_size, idx[1][i]:idx[1][i] + kernel_size, 1], gauss))
gauss_img[idx[0][i], idx[1][i], 2] = np.sum(
np.multiply(pad_img[idx[0][i]:idx[0][i] + kernel_size, idx[1][i]:idx[1][i] + kernel_size, 2], gauss))
cv2.imwrite(os.path.join(save_dir, file_name), gauss_img)
示例5: sharpen_frame
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import Canny [as 別名]
def sharpen_frame(old: np.ndarray) -> np.ndarray:
"""
refine the edges of an image
- https://answers.opencv.org/question/121205/how-to-refine-the-edges-of-an-image/
- https://stackoverflow.com/questions/4993082/how-to-sharpen-an-image-in-opencv
:param old:
:return:
"""
# TODO these args are locked and can not be changed
blur = turn_blur(old)
smooth = cv2.addWeighted(blur, 1.5, old, -0.5, 0)
canny = cv2.Canny(smooth, 50, 150)
return canny
示例6: __apply_canny
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import Canny [as 別名]
def __apply_canny(self, src, ksize=7, sigma=1.2, low_th=10, high_th=70):
"""Apply canny edge detection.
Args:
src (int): Input image BGR.
numpy.ndarray, (720, 1280, 3), 0~255
Returns:
dst (int): Output image.
numpy.ndarray, (720, 1280), 0~1
"""
gray = cv2.cvtColor(src, cv2.COLOR_RGB2GRAY)
blur_gray = cv2.GaussianBlur(gray,(ksize, ksize), sigma)
dst = cv2.Canny(blur_gray, low_th, high_th) // 255
return dst
示例7: _create_derivative
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import Canny [as 別名]
def _create_derivative(cls, filepath):
img = cv2.imread(filepath,0)
edges = cv2.Canny(img, 175, 320, apertureSize=3)
# Create gradient map using Sobel
sobelx64f = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=-1)
sobely64f = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=-1)
theta = np.arctan2(sobely64f, sobelx64f)
if diagnostics:
cv2.imwrite('edges.jpg',edges)
cv2.imwrite('sobelx64f.jpg', np.absolute(sobelx64f))
cv2.imwrite('sobely64f.jpg', np.absolute(sobely64f))
# amplify theta for visual inspection
theta_visible = (theta + np.pi)*255/(2*np.pi)
cv2.imwrite('theta.jpg', theta_visible)
return (edges, sobelx64f, sobely64f, theta)
示例8: __init__
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import Canny [as 別名]
def __init__(self, imgfile):
"""
Create a new image processing object for <imgfile>.
"""
if not imgfile:
raise ValueError("parameter 'imgfile' must be a non-empty, non-None string")
self.imgfile = imgfile
self.input_img = None
self.img_w = None
self.img_h = None
self.gray_img = None # grayscale version of the input image
self.edges = None # edges detected by Canny algorithm
self.lines_hough = [] # contains tuples (rho, theta, theta_norm, DIRECTION_HORIZONTAL or DIRECTION_VERTICAL)
self._load_imgfile()
示例9: test___init___single_value_hysteresis
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import Canny [as 別名]
def test___init___single_value_hysteresis(self):
aug = iaa.Canny(
alpha=0.2,
hysteresis_thresholds=[0, 1, 2],
sobel_kernel_size=[3, 5],
colorizer=iaa.RandomColorsBinaryImageColorizer(
color_true=10, color_false=20)
)
assert is_parameter_instance(aug.alpha, iap.Deterministic)
assert is_parameter_instance(aug.hysteresis_thresholds, iap.Choice)
assert is_parameter_instance(aug.sobel_kernel_size, iap.Choice)
assert isinstance(aug.colorizer, iaa.RandomColorsBinaryImageColorizer)
assert np.isclose(aug.alpha.value, 0.2)
assert aug.hysteresis_thresholds.a == [0, 1, 2]
assert is_parameter_instance(aug.sobel_kernel_size, iap.Choice)
assert aug.sobel_kernel_size.a == [3, 5]
assert is_parameter_instance(aug.colorizer.color_true,
iap.Deterministic)
assert is_parameter_instance(aug.colorizer.color_false,
iap.Deterministic)
assert aug.colorizer.color_true.value == 10
assert aug.colorizer.color_false.value == 20
示例10: test_get_parameters
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import Canny [as 別名]
def test_get_parameters(self):
alpha = iap.Deterministic(0.2)
hysteresis_thresholds = iap.Deterministic(10)
sobel_kernel_size = iap.Deterministic(3)
colorizer = iaa.RandomColorsBinaryImageColorizer(
color_true=10, color_false=20)
aug = iaa.Canny(
alpha=alpha,
hysteresis_thresholds=hysteresis_thresholds,
sobel_kernel_size=sobel_kernel_size,
colorizer=colorizer
)
params = aug.get_parameters()
assert params[0] is aug.alpha
assert params[1] is aug.hysteresis_thresholds
assert params[2] is aug.sobel_kernel_size
assert params[3] is colorizer
示例11: test___str___tuple_as_hysteresis
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import Canny [as 別名]
def test___str___tuple_as_hysteresis(self):
alpha = iap.Deterministic(0.2)
hysteresis_thresholds = (
iap.Deterministic(10),
iap.Deterministic(11)
)
sobel_kernel_size = iap.Deterministic(3)
colorizer = iaa.RandomColorsBinaryImageColorizer(
color_true=10, color_false=20)
aug = iaa.Canny(
alpha=alpha,
hysteresis_thresholds=hysteresis_thresholds,
sobel_kernel_size=sobel_kernel_size,
colorizer=colorizer
)
observed = aug.__str__()
expected = ("Canny(alpha=%s, hysteresis_thresholds=(%s, %s), "
"sobel_kernel_size=%s, colorizer=%s, name=UnnamedCanny, "
"deterministic=False)") % (
str(aug.alpha),
str(aug.hysteresis_thresholds[0]),
str(aug.hysteresis_thresholds[1]),
str(aug.sobel_kernel_size),
colorizer)
assert observed == expected
示例12: edges
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import Canny [as 別名]
def edges(mask):
'''
Get edges with canny detector
'''
# blur
mask = cv2.GaussianBlur(mask, (5, 5), 0)
edges = cv2.Canny(mask, 100, 200)
# stretch
edges = contrast_stretch(edges)
# cast
edges = np.uint8(edges)
return edges
示例13: threshold
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import Canny [as 別名]
def threshold(self):
src = self.cv_read_img(self.src_file)
if src is None:
return
gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
# 這個函數的第一個參數就是原圖像,原圖像應該是灰度圖。
# 第二個參數就是用來對像素值進行分類的閾值。
# 第三個參數就是當像素值高於(有時是小於)閾值時應該被賦予的新的像素值
# 第四個參數來決定閾值方法,見threshold_simple()
# ret, binary = cv.threshold(gray, 127, 255, cv.THRESH_BINARY)
ret, dst = cv.threshold(gray, 127, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)
self.decode_and_show_dst(dst)
# Canny邊緣檢測
示例14: canny_edge
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import Canny [as 別名]
def canny_edge(self):
src = self.cv_read_img(self.src_file)
if src is None:
return
blurred = cv.GaussianBlur(src, (3, 3), 0)
gray = cv.cvtColor(blurred, cv.COLOR_BGR2GRAY)
grad_x = cv.Sobel(gray, cv.CV_16SC1, 1, 0)
grad_y = cv.Sobel(gray, cv.CV_16SC1, 0, 1)
dst = cv.Canny(grad_x, grad_y, 30, 150)
# dst = cv.Canny(gray, 50, 150)
self.decode_and_show_dst(dst)
# 直線檢測
示例15: hough_line
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import Canny [as 別名]
def hough_line(self):
src = self.cv_read_img(self.src_file)
if src is None:
return
gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
edges = cv.Canny(gray, 50, 150, apertureSize=3)
lines = cv.HoughLines(edges, 1, np.pi/180, 200)
for line in lines:
rho, theta = line[0]
a = np.cos(theta)
b = np.sin(theta)
x0 = a * rho
y0 = b * rho
x1 = int(x0+1000*(-b))
y1 = int(y0+1000*(a))
x2 = int(x0-1000*(-b))
y2 = int(y0-1000*(a))
cv.line(src, (x1, y1), (x2, y2), (0, 0, 255), 2)
self.decode_and_show_dst(src)
# 圓檢測