本文整理匯總了Python中cv.ShowImage方法的典型用法代碼示例。如果您正苦於以下問題:Python cv.ShowImage方法的具體用法?Python cv.ShowImage怎麽用?Python cv.ShowImage使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類cv
的用法示例。
在下文中一共展示了cv.ShowImage方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: detect_and_draw
# 需要導入模塊: import cv [as 別名]
# 或者: from cv import ShowImage [as 別名]
def detect_and_draw(img, cascade):
# allocate temporary images
gray = cv.CreateImage((img.width,img.height), 8, 1)
small_img = cv.CreateImage((cv.Round(img.width / image_scale),
cv.Round (img.height / image_scale)), 8, 1)
# convert color input image to grayscale
cv.CvtColor(img, gray, cv.CV_BGR2GRAY)
# scale input image for faster processing
cv.Resize(gray, small_img, cv.CV_INTER_LINEAR)
cv.EqualizeHist(small_img, small_img)
if(cascade):
t = cv.GetTickCount()
faces = cv.HaarDetectObjects(small_img, cascade, cv.CreateMemStorage(0),
haar_scale, min_neighbors, haar_flags, min_size)
t = cv.GetTickCount() - t
print "detection time = %gms" % (t/(cv.GetTickFrequency()*1000.))
if faces:
for ((x, y, w, h), n) in faces:
# the input to cv.HaarDetectObjects was resized, so scale the
# bounding box of each face and convert it to two CvPoints
pt1 = (int(x * image_scale), int(y * image_scale))
pt2 = (int((x + w) * image_scale), int((y + h) * image_scale))
cv.Rectangle(img, pt1, pt2, cv.RGB(255, 0, 0), 3, 8, 0)
print "x= "+str(x)+" y= "+str(y)+" w= "+str(w)+" h= "+str(h)
cv.ShowImage("Face detection", img)
示例2: disp_thresh
# 需要導入模塊: import cv [as 別名]
# 或者: from cv import ShowImage [as 別名]
def disp_thresh(lower, upper):
depth, timestamp = freenect.sync_get_depth()
depth = 255 * np.logical_and(depth > lower, depth < upper)
depth = depth.astype(np.uint8)
image = cv.CreateImageHeader((depth.shape[1], depth.shape[0]),
cv.IPL_DEPTH_8U,
1)
cv.SetData(image, depth.tostring(),
depth.dtype.itemsize * depth.shape[1])
cv.ShowImage('Depth', image)
cv.WaitKey(10)
示例3: display_depth
# 需要導入模塊: import cv [as 別名]
# 或者: from cv import ShowImage [as 別名]
def display_depth(dev, data, timestamp):
global keep_running
cv.ShowImage('Depth', frame_convert.pretty_depth_cv(data))
if cv.WaitKey(10) == 27:
keep_running = False
示例4: display_rgb
# 需要導入模塊: import cv [as 別名]
# 或者: from cv import ShowImage [as 別名]
def display_rgb(dev, data, timestamp):
global keep_running
cv.ShowImage('RGB', frame_convert.video_cv(data))
if cv.WaitKey(10) == 27:
keep_running = False
示例5: show_depth
# 需要導入模塊: import cv [as 別名]
# 或者: from cv import ShowImage [as 別名]
def show_depth():
global threshold
global current_depth
depth, timestamp = freenect.sync_get_depth()
depth = 255 * np.logical_and(depth >= current_depth - threshold,
depth <= current_depth + threshold)
depth = depth.astype(np.uint8)
image = cv.CreateImageHeader((depth.shape[1], depth.shape[0]),
cv.IPL_DEPTH_8U,
1)
cv.SetData(image, depth.tostring(),
depth.dtype.itemsize * depth.shape[1])
cv.ShowImage('Depth', image)
示例6: show_video
# 需要導入模塊: import cv [as 別名]
# 或者: from cv import ShowImage [as 別名]
def show_video():
cv.ShowImage('Video', frame_convert.video_cv(freenect.sync_get_video()[0]))
示例7: detect_and_draw
# 需要導入模塊: import cv [as 別名]
# 或者: from cv import ShowImage [as 別名]
def detect_and_draw(img):
t1 = time.time()
# allocate temporary images
gray = cv.CreateImage((img.width,img.height), 8, 1)
small_img = cv.CreateImage((cv.Round(img.width / image_scale),
cv.Round (img.height / image_scale)), 8, 1)
# blur the source image to reduce color noise
cv.Smooth(img, img, cv.CV_BLUR, 3);
hsv_img = cv.CreateImage(cv.GetSize(img), 8, 3)
cv.CvtColor(img, hsv_img, cv.CV_BGR2HSV)
thresholded_img = cv.CreateImage(cv.GetSize(hsv_img), 8, 1)
#cv.InRangeS(hsv_img, (120, 80, 80), (140, 255, 255), thresholded_img)
# White
sensitivity = 15
cv.InRangeS(hsv_img, (0, 0, 255-sensitivity), (255, sensitivity, 255), thresholded_img)
# Red
#cv.InRangeS(hsv_img, (0, 150, 0), (5, 255, 255), thresholded_img)
# Blue
#cv.InRangeS(hsv_img, (100, 50, 50), (140, 255, 255), thresholded_img)
# Green
#cv.InRangeS(hsv_img, (40, 50, 50), (80, 255, 255), thresholded_img)
mat=cv.GetMat(thresholded_img)
moments = cv.Moments(mat, 0)
area = cv.GetCentralMoment(moments, 0, 0)
# scale input image for faster processing
cv.Resize(gray, small_img, cv.CV_INTER_LINEAR)
cv.EqualizeHist(small_img, small_img)
if(area > 5000):
#determine the x and y coordinates of the center of the object
#we are tracking by dividing the 1, 0 and 0, 1 moments by the area
x = cv.GetSpatialMoment(moments, 1, 0)/area
y = cv.GetSpatialMoment(moments, 0, 1)/area
x = int(round(x))
y = int(round(y))
#create an overlay to mark the center of the tracked object
overlay = cv.CreateImage(cv.GetSize(img), 8, 3)
cv.Circle(overlay, (x, y), 2, (0, 0, 0), 20)
cv.Add(img, overlay, img)
#add the thresholded image back to the img so we can see what was
#left after it was applied
#cv.Merge(thresholded_img, None, None, None, img)
t2 = time.time()
message = "Color tracked!"
print "detection time = %gs x=%d,y=%d" % ( round(t2-t1,3) , x, y)
cv.ShowImage("Color detection", img)
示例8: run
# 需要導入模塊: import cv [as 別名]
# 或者: from cv import ShowImage [as 別名]
def run(self):
while True:
img = cv.QueryFrame( self.capture )
t1 = time.time()
#blur the source image to reduce color noise
cv.Smooth(img, img, cv.CV_BLUR, 3);
#convert the image to hsv(Hue, Saturation, Value) so its
#easier to determine the color to track(hue)
hsv_img = cv.CreateImage(cv.GetSize(img), 8, 3)
cv.CvtColor(img, hsv_img, cv.CV_BGR2HSV)
#limit all pixels that don't match our criteria, in this case we are
#looking for purple but if you want you can adjust the first value in
#both turples which is the hue range(120,140). OpenCV uses 0-180 as
#a hue range for the HSV color model
thresholded_img = cv.CreateImage(cv.GetSize(hsv_img), 8, 1)
# White
sensitivity = 10
cv.InRangeS(hsv_img, (0, 0, 255-sensitivity), (255, sensitivity, 255), thresholded_img)
# Red
#cv.InRangeS(hsv_img, (0, 150, 0), (5, 255, 255), thresholded_img)
# Blue
#cv.InRangeS(hsv_img, (100, 50, 50), (140, 255, 255), thresholded_img)
# Green
#cv.InRangeS(hsv_img, (40, 50, 50), (80, 255, 255), thresholded_img)
#determine the objects moments and check that the area is large
#enough to be our object
mat=cv.GetMat(thresholded_img)
moments = cv.Moments(mat, 0)
area = cv.GetCentralMoment(moments, 0, 0)
#there can be noise in the video so ignore objects with small areas
if(area > 10000):
#determine the x and y coordinates of the center of the object
#we are tracking by dividing the 1, 0 and 0, 1 moments by the area
x = cv.GetSpatialMoment(moments, 1, 0)/area
y = cv.GetSpatialMoment(moments, 0, 1)/area
x = int(round(x))
y = int(round(y))
#create an overlay to mark the center of the tracked object
overlay = cv.CreateImage(cv.GetSize(img), 8, 3)
cv.Circle(overlay, (x, y), 2, (255, 255, 255), 20)
cv.Add(img, overlay, img)
#add the thresholded image back to the img so we can see what was
#left after it was applied
t2 = time.time()
cv.Merge(thresholded_img, None, None, None, img)
print "detection time = %gs x=%d,y=%d" % ( round(t2-t1,3) , x, y)
#display the image
cv.ShowImage(color_tracker_window, img)
if cv.WaitKey(10) == 27:
break
示例9: processVideo
# 需要導入模塊: import cv [as 別名]
# 或者: from cv import ShowImage [as 別名]
def processVideo(self, jpegbytes, timestamp_10msec):
# Update controller events
pygame.event.pump()
# Toggle lights
self.lightsAreOn = self.checkButton(self.lightsAreOn, BUTTON_LIGHTS, self.turnLightsOn, self.turnLightsOff)
# Toggle night vision (infrared camera)
self.stealthIsOn = self.checkButton(self.stealthIsOn, BUTTON_STEALTH, self.turnStealthOn, self.turnStealthOff)
# Move camera up/down
if self.controller.get_button(BUTTON_CAMERA_UP):
self.moveCameraVertical(1)
elif self.controller.get_button(BUTTON_CAMERA_DOWN):
self.moveCameraVertical(-1)
else:
self.moveCameraVertical(0)
# Set treads based on axes
self.setTreads(self.axis(1), self.axis(3))
# Display video image if possible
try:
if cv:
# Save image to file on disk and load as OpenCV image
fname = 'tmp.jpg'
fd = open(fname, 'w')
fd.write(jpegbytes)
fd.close()
image = cv.LoadImage(fname)
# Show image
cv.ShowImage(self.wname, image )
if cv.WaitKey(1) & 0xFF == 27: # ESC
self.quit = True
else:
pass
except:
pass
# Converts Y coordinate of specified axis to +/-1 or 0
示例10: FPV_thread
# 需要導入模塊: import cv [as 別名]
# 或者: from cv import ShowImage [as 別名]
def FPV_thread():
global camera_index
global capture
global WINDOW_NAME
global latest_frame
global FPV_thread_stop
global overlay_message # shared with application return results
global face_position # shared with application return results
FPV_init()
cv.NamedWindow(WINDOW_NAME, cv.CV_WINDOW_NORMAL)
cv.MoveWindow(WINDOW_NAME, 0, 0)
width_scale = 1.0
height_scale = 1.0
while True:
frame = cv.QueryFrame(capture)
cv.Flip(frame, None, 1)
#copy to buffer
frame_lock.acquire()
original_imagesize = (0,0)
resized_imagesize = (0,0)
if not latest_frame:
latest_frame = cv.CreateImage((640, 480), frame.depth, frame.nChannels)
original_imagesize = cv.GetSize(frame)
resized_imagesize = cv.GetSize(latest_frame)
width_scale = original_imagesize[0]*1.0/resized_imagesize[0]
height_scale = original_imagesize[1]*1.0/resized_imagesize[1]
cv.Resize(frame, latest_frame)
frame_lock.release()
#Display Result
text_start_point = (10, 50)
cv.PutText(frame, overlay_message, text_start_point, font, cv.Scalar(255,255,255))
cv.Rectangle(frame, text_start_point, (original_imagesize[0], 100), cv.Scalar(0,0,0), thickness=cv.CV_FILLED)
if face_position[0] > 0.0:
point1 = (int(face_position[0]*width_scale), int(face_position[1]*height_scale))
point2 = (int((face_position[0] + face_position[2])*width_scale), \
int((face_position[1]+face_position[3])*height_scale))
cv.Rectangle(frame, point1, point2, \
cv.Scalar(255, 255, 255), thickness=2)
cv.ShowImage(WINDOW_NAME, frame)
cv.ResizeWindow(WINDOW_NAME, 200, 100)
cv.NamedWindow(WINDOW_NAME, cv.CV_WINDOW_NORMAL);
cv.SetWindowProperty(WINDOW_NAME, 0, cv.CV_WINDOW_FULLSCREEN);
c = cv.WaitKey(10)
if c == ord('q'):
break
print "[INFO] FPV Thread is finished"
FPV_thread_stop = True
FPV_close()