當前位置: 首頁>>代碼示例>>Python>>正文


Python cv.CvtColor方法代碼示例

本文整理匯總了Python中cv.CvtColor方法的典型用法代碼示例。如果您正苦於以下問題:Python cv.CvtColor方法的具體用法?Python cv.CvtColor怎麽用?Python cv.CvtColor使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在cv的用法示例。


在下文中一共展示了cv.CvtColor方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: image_data_as_rgb

# 需要導入模塊: import cv [as 別名]
# 或者: from cv import CvtColor [as 別名]
def image_data_as_rgb(self, update_image=True):
        # TODO: Handle other formats
        if self.image_channels == 4:
            mode = 'BGRA'
        elif self.image_channels == 3:
            mode = 'BGR'
        else:
            mode = 'BGR'
            rgb_copy = cv.CreateImage((self.image.width, self.image.height), 8, 3)
            cv.CvtColor(self.image, rgb_copy, cv.CV_GRAY2BGR)
            self.image = rgb_copy
        return mode, self.image.tostring() 
開發者ID:thumbor,項目名稱:opencv-engine,代碼行數:14,代碼來源:engine.py

示例2: convert_to_grayscale

# 需要導入模塊: import cv [as 別名]
# 或者: from cv import CvtColor [as 別名]
def convert_to_grayscale(self):
        if self.image_channels >= 3:
            # FIXME: OpenCV does not support grayscale with alpha channel?
            grayscaled = cv.CreateImage((self.image.width, self.image.height), self.image_depth, 1)
            cv.CvtColor(self.image, grayscaled, cv.CV_BGRA2GRAY)
            self.image = grayscaled 
開發者ID:thumbor,項目名稱:opencv-engine,代碼行數:8,代碼來源:engine.py

示例3: enable_alpha

# 需要導入模塊: import cv [as 別名]
# 或者: from cv import CvtColor [as 別名]
def enable_alpha(self):
        if self.image_channels < 4:
            with_alpha = cv.CreateImage(
                (self.image.width, self.image.height), self.image_depth, 4
            )
            if self.image_channels == 3:
                cv.CvtColor(self.image, with_alpha, cv.CV_BGR2BGRA)
            else:
                cv.CvtColor(self.image, with_alpha, cv.CV_GRAY2BGRA)
            self.image = with_alpha 
開發者ID:thumbor,項目名稱:opencv-engine,代碼行數:12,代碼來源:engine.py

示例4: detect_and_draw

# 需要導入模塊: import cv [as 別名]
# 或者: from cv import CvtColor [as 別名]
def detect_and_draw(img, cascade):
    # allocate temporary images
    gray = cv.CreateImage((img.width,img.height), 8, 1)
    small_img = cv.CreateImage((cv.Round(img.width / image_scale),
			       cv.Round (img.height / image_scale)), 8, 1)

    # convert color input image to grayscale
    cv.CvtColor(img, gray, cv.CV_BGR2GRAY)

    # scale input image for faster processing
    cv.Resize(gray, small_img, cv.CV_INTER_LINEAR)

    cv.EqualizeHist(small_img, small_img)

    if(cascade):
        t = cv.GetTickCount()
        faces = cv.HaarDetectObjects(small_img, cascade, cv.CreateMemStorage(0),
                                     haar_scale, min_neighbors, haar_flags, min_size)
        t = cv.GetTickCount() - t
        print "detection time = %gms" % (t/(cv.GetTickFrequency()*1000.))
        if faces:
            for ((x, y, w, h), n) in faces:
                # the input to cv.HaarDetectObjects was resized, so scale the 
                # bounding box of each face and convert it to two CvPoints
                pt1 = (int(x * image_scale), int(y * image_scale))
                pt2 = (int((x + w) * image_scale), int((y + h) * image_scale))
                cv.Rectangle(img, pt1, pt2, cv.RGB(255, 0, 0), 3, 8, 0)
                print "x= "+str(x)+" y= "+str(y)+" w= "+str(w)+" h= "+str(h)

    cv.ShowImage("Face detection", img) 
開發者ID:alduxvm,項目名稱:rpi-opencv,代碼行數:32,代碼來源:face-detection.py

示例5: pygame_from_cv

# 需要導入模塊: import cv [as 別名]
# 或者: from cv import CvtColor [as 別名]
def pygame_from_cv(src):
  import cv
  """ return pygame image from opencv image """
  src_rgb = cv.CreateMat(src.height, src.width, cv.CV_8UC3)
  cv.CvtColor(src, src_rgb, cv.CV_BGR2RGB)
  return pygame.image.frombuffer(src_rgb.tostring(), cv.GetSize(src_rgb), "RGB") 
開發者ID:andrewowens,項目名稱:multisensory,代碼行數:8,代碼來源:util.py

示例6: detect_and_draw

# 需要導入模塊: import cv [as 別名]
# 或者: from cv import CvtColor [as 別名]
def detect_and_draw(img):
    t1 = time.time()

    # allocate temporary images
    gray = cv.CreateImage((img.width,img.height), 8, 1)
    small_img = cv.CreateImage((cv.Round(img.width / image_scale),
			       cv.Round (img.height / image_scale)), 8, 1)

    # blur the source image to reduce color noise 
    cv.Smooth(img, img, cv.CV_BLUR, 3);
    hsv_img = cv.CreateImage(cv.GetSize(img), 8, 3)
    cv.CvtColor(img, hsv_img, cv.CV_BGR2HSV)
    thresholded_img =  cv.CreateImage(cv.GetSize(hsv_img), 8, 1)
    #cv.InRangeS(hsv_img, (120, 80, 80), (140, 255, 255), thresholded_img)

    # White
    sensitivity = 15
    cv.InRangeS(hsv_img, (0, 0, 255-sensitivity), (255, sensitivity, 255), thresholded_img)

    # Red
    #cv.InRangeS(hsv_img, (0, 150, 0), (5, 255, 255), thresholded_img)

    # Blue
    #cv.InRangeS(hsv_img, (100, 50, 50), (140, 255, 255), thresholded_img)

    # Green
    #cv.InRangeS(hsv_img, (40, 50, 50), (80, 255, 255), thresholded_img)

    mat=cv.GetMat(thresholded_img)
    moments = cv.Moments(mat, 0)
    area = cv.GetCentralMoment(moments, 0, 0)

    # scale input image for faster processing
    cv.Resize(gray, small_img, cv.CV_INTER_LINEAR)

    cv.EqualizeHist(small_img, small_img)

    if(area > 5000):
        #determine the x and y coordinates of the center of the object 
        #we are tracking by dividing the 1, 0 and 0, 1 moments by the area 
        x = cv.GetSpatialMoment(moments, 1, 0)/area
        y = cv.GetSpatialMoment(moments, 0, 1)/area
        x = int(round(x))
        y = int(round(y))

        #create an overlay to mark the center of the tracked object 
        overlay = cv.CreateImage(cv.GetSize(img), 8, 3)

        cv.Circle(overlay, (x, y), 2, (0, 0, 0), 20)
        cv.Add(img, overlay, img)
        #add the thresholded image back to the img so we can see what was  
        #left after it was applied 
        #cv.Merge(thresholded_img, None, None, None, img)
        t2 = time.time()
        message = "Color tracked!"
        print "detection time = %gs x=%d,y=%d" % ( round(t2-t1,3) , x, y)

    cv.ShowImage("Color detection", img) 
開發者ID:alduxvm,項目名稱:rpi-opencv,代碼行數:60,代碼來源:color-2.py

示例7: run

# 需要導入模塊: import cv [as 別名]
# 或者: from cv import CvtColor [as 別名]
def run(self):
        while True:
            img = cv.QueryFrame( self.capture )
            t1 = time.time()
            #blur the source image to reduce color noise 
            cv.Smooth(img, img, cv.CV_BLUR, 3);

            #convert the image to hsv(Hue, Saturation, Value) so its  
            #easier to determine the color to track(hue) 
            hsv_img = cv.CreateImage(cv.GetSize(img), 8, 3)
            cv.CvtColor(img, hsv_img, cv.CV_BGR2HSV)

            #limit all pixels that don't match our criteria, in this case we are  
            #looking for purple but if you want you can adjust the first value in  
            #both turples which is the hue range(120,140).  OpenCV uses 0-180 as  
            #a hue range for the HSV color model 
            thresholded_img =  cv.CreateImage(cv.GetSize(hsv_img), 8, 1)

            # White
            sensitivity = 10
            cv.InRangeS(hsv_img, (0, 0, 255-sensitivity), (255, sensitivity, 255), thresholded_img)

            # Red
            #cv.InRangeS(hsv_img, (0, 150, 0), (5, 255, 255), thresholded_img)

            # Blue
            #cv.InRangeS(hsv_img, (100, 50, 50), (140, 255, 255), thresholded_img)

            # Green
            #cv.InRangeS(hsv_img, (40, 50, 50), (80, 255, 255), thresholded_img)

            #determine the objects moments and check that the area is large  
            #enough to be our object 
            mat=cv.GetMat(thresholded_img)
            moments = cv.Moments(mat, 0)
            area = cv.GetCentralMoment(moments, 0, 0)

            #there can be noise in the video so ignore objects with small areas 
            if(area > 10000):
                #determine the x and y coordinates of the center of the object 
                #we are tracking by dividing the 1, 0 and 0, 1 moments by the area 
                x = cv.GetSpatialMoment(moments, 1, 0)/area
                y = cv.GetSpatialMoment(moments, 0, 1)/area
                x = int(round(x))
                y = int(round(y))

                #create an overlay to mark the center of the tracked object 
                overlay = cv.CreateImage(cv.GetSize(img), 8, 3)
                cv.Circle(overlay, (x, y), 2, (255, 255, 255), 20)
                cv.Add(img, overlay, img)
                #add the thresholded image back to the img so we can see what was  
                #left after it was applied 
                t2 = time.time()
                cv.Merge(thresholded_img, None, None, None, img)
                print "detection time = %gs x=%d,y=%d" % ( round(t2-t1,3) , x, y)
            
            #display the image  
            cv.ShowImage(color_tracker_window, img)

            if cv.WaitKey(10) == 27:
                break 
開發者ID:alduxvm,項目名稱:rpi-opencv,代碼行數:63,代碼來源:color-1.py


注:本文中的cv.CvtColor方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。